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FOREWORD 

 

The Self-Learning Material (SLM) is written with the aim of providing simple 

and organized study content to all the learners. The SLMs are prepared on the 

framework of being mutually cohesive, internally consistent and structured as 

per the university’s syllabi. It is a humble attempt to give glimpses of the 

various approaches and dimensions to the topic of study and to kindle the 

learner’s interest to the subject 

 

We have tried to put together information from various sources into this book 

that has been written in an engaging style with interesting and relevant 

examples. It introduces you to the insights of subject concepts and theories and 

presents them in a way that is easy to understand and comprehend.  

 

We always believe in continuous improvement and would periodically update 

the content in the very interest of the learners. It may be added that despite 

enormous efforts and coordination, there is every possibility for some omission 

or inadequacy in few areas or topics, which would definitely be rectified in 

future. 

 

We hope you enjoy learning from this book and the experience truly enrich 

your learning and help you to advance in your career and future endeavours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



COMPLEX ANALYSIS I 

 

BLOCK 1   

Unit - I: Complex Functions .................................................................. 7 

Unit  -  Ii: Analytic Functions .............................................................. 30 

Unit  -  Iii: Integration ….. Complex Integration............................... 50 

Unit  -  Iv: Laurent Expansions And The Residue Theorem ............ 72 

Unit  -  V: Harmonic Functions ........................................................... 93 

Unit  -  Vi: Entire Functions….. Sequences Of Analytic Function . 111 

Unit  -  Vii: The Riemann Mapping Theorem .................................. 134 

  

BLOCK 2   

Unit VIII Elementary Functions…. The Exponential Function 

Unit IX  Series  

Unit X   Residues And Poles 

Unit XI  Applications Of Residues 

Unit XII  Mapping By Elementary Functions …  Linear  

Transformations 

Unit XIII Conformal Mapping  

Unit XIV   Schwarz-Christoffel Transformation 

 

 

 

 

 



 

BLOCK 1 COMPLEX ANALYSIS I  

Introduction to the Block 
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UNIT - I: COMPLEX FUNCTIONS 

 

STRUCTURE 

1.0 Objectives 

1.1 Introduction 

1.2 Complex Functions…The Complex Number System 

1.3 Polar Form Of Complex Numbers 

1.4 Square Roots 

1.5 Stereographic Projection 

1.6 Mobius Transforms 

1.7 Let Us Sum Up   

1.8 Keywords   

1.9 Questions For Review   

1.10 Answers To Check Your Progress 

1.11 References  

  

1.0 OBJECTIVES 

 

After studying this unit,  you should be able to: 

Learn,  Understand about Complex Functions 

The Complex Number System 

Polar Form Of Complex Numbers 

Square Roots 

Stereographic Projection 
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Mobius Transforms 

1.1 INTRODUCTION 

In this part of the course we will study some basic complex analysis. 

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematic 

In this section we will study complex functions of a complex variable,  

Complex Functions, The Complex Number System, Polar Form Of 

Complex Numbers, Square Roots, Stereographic Projection, Mobius 

Transforms 

1.2COMPLEX FUNCTIONS…THE 

COMPLEX NUMBER SYSTEM 

A group (G, * is a setprovided with a binary operation 1 * satisfying 

the following properties: 

For all elements x, y and z  (x * y * z=x * (y * z. (associative law 

There exists a neutral elementwith the properties  

x*e = e * x=x for every x  G. 

Every element x has an inverse x-1 with the properties 

x * x 1=x 1 * x=e. 

Definition: Let  be a magma (a set  with binary operation ). 

Call an element  a left-associative element (or left neutral 

element) if the following holds: 

 

Then 

 

 

                                                      

 

https://groupprops.subwiki.org/wiki/Magma
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The set of left-associative elements of  forms a submagma of . 

Further, this submagma is a semigroup, since it is associative. This 

submagma is termed the left neutral  of the magma. 

1. If  contains a left neutral element , then  is left-

associative, and is a left neutral element for the submagma of 

left-associative elements. 

2. If  contains a left nil , then  is left-associative. 

Definition: Let  be a magma (a set  with binary 

operation ). Call an element  a right-associative element if 

the following holds: 

 

Then: 

1. The set of right-associative elements of  forms a submagma 

of . This submagma is termed the Right neutral  of the magma. 

2. If  contains a right neutral element , then  is right-

associative, and is a right neutral element for the submagma of 

right-associative elements. 

3. If  contains a right nil , then  is right-associative, and is a 

right nil for the submagma of right-associative elements. 

 

EXERCISE. Show that a set provided with an associative binary 

operation can have at most one neutral element. 

Hint: Show that if the set has a 'left neutral' element and a 'right neutral' 

element, they must coincide. 

Proof : 

Left neutral: 

Given: A magma , two left-associative elements (i.e., left     

neutral)  

To prove:  is left-associative (i.e., left neutral) 

https://groupprops.subwiki.org/wiki/Left_nucleus
https://groupprops.subwiki.org/wiki/Neutral_element
https://groupprops.subwiki.org/wiki/Nil_element
https://groupprops.subwiki.org/wiki/Magma
https://groupprops.subwiki.org/wiki/Right_nucleus
https://groupprops.subwiki.org/wiki/Neutral_element
https://groupprops.subwiki.org/wiki/Nil_element
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Proof: We need to show that, for any , we have: 

 

Let's do this. Start with the left side and proceed as follows: 

 

In three of the steps, we use the fact that  is left-associative, and in 

one of the steps, we use the fact that  is left-associative. 

Right neutral: 

Given: A magma , two right-associative (i.e., right neutral)     

elements  

To prove:  is right-associative (i.e., right neutral) 

Proof: We need to show that, for any , we have: 

. 

Let's do this. Start with the left side and proceed as follows: 

 

Given an element aa in a set with a binary operation, an inverse 

element for aa is an element which gives the identity when composed 

with a.a. 

More explicitly, let SS be a set, *∗ a binary operation on S,S, and a\in 

S.a∈S. Suppose that there is an identity element ee for the operation. 

Then 

 an element bb is a left inverse for aa if b*a = e;b∗a=e; 

 an element cc is a right inverse for aa if a*c=e;a∗c=e; 

 an element is an inverse (or two-sided inverse) for aa if it is both 

a left and right inverse for a.a. 

 

https://brilliant.org/wiki/binary-operations/
https://brilliant.org/wiki/identity-element/
https://brilliant.org/wiki/identity-element/
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EXERCISE . Show that if a set has an associative binary operation 

with neutral element, then any element of the set has at most one 

inverse. 

Hint: Show that if an element has a 'left inverse' and a 'right inverse',  

then these must coincide. 

Proof: 

Let e be the identity. Then c=e*c=(b*a) *c=b*(a*c)=b*e 

=b.c=e*c=(b*a) *c=b*(a*c)=b*e=b 

The same argument shows that any other left inverse b
1
 b

1
must equal 

c.c and hence b.b. 

Similarly, any other right inverse equals b.b and hence c.c. 

So there is exactly one left inverse and exactly one right inverse, and 

they coincide, so there is exactly one two-sided inverse. 

A group may also have the property 

For all elements x and y x * y=y * x. (commutative law 

in which case the group is called commutative or Abelian (after Niels 

Henrik Abel (1802-1829. Familiar examples of Abelian groups are (Z, 

+, the integers under ordinary addition; (R, +, the real num- bers under 

addition; (Rn, +, the set of n-tuples of real numbers under (vector 

addition; and (R \ {0}, •, the non-zero real numbers under 

multiplication. As an example of a non-Abelian group, consider the set 

of all rotations around lines through the origin in 3-dimensional space; 

the binary operation is the ordinary composition of maps. The reader 

should check these examples carefully; in particular, find the neutral 

elements and inverses in these groups. 

A field (F, +, • is a set F provided with two binary operations + and •, 

such that (F, + is an Abelian group and, if 0 denotes the neutral element 

of this group, also (F \ {0}, • is an Abelian group. In addition the 

distributive laws 
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(x+y • z=x • z+y • z,  x • (y+z=x • y+x • z. 

hold for all elements x, y and z  F. It is usual to denote the neutral 

element of (F \ {0}, •. 

EXERCISE. Prove that in any field F holds 0 • x=x • 0=0 for all x  F 

(as always, 0 denotes the neutral element of the group (F, +. 

EXERCISE. Prove that a field does not have any non-zero divi- sors of 

zero, i.e., if xy=0, then either x=0 or y=0. 

Familiar examples of fields are (Q, +, •, the rational numbers under 

ordinary addition and multiplication, and (R, +, •. We shall show, in this 

section, that there is precisely one reasonable way of making the 

Euclidean plane into a field. By introducing Cartesian coordinates this 

plane may be identified with the Abelian group (R2, +, and we will 

make this into a field by extending the usual multiplication of an element 

of R2 by a real number. The resulting field is the field C of complex 

numbers. 

To see how to make the definition, assume we have already managed to 

construct our field C. Then there is a multiplicative neutral element,  

which we will for the moment denote by 1, to distinguish it from the real 

number 1. We may identify R with the set of real multiples of 1 

(explain! and may therefore consider R as a subset of C. Letbe an 

element of R2 which is linearly independent of 1, so that 1,is a basis 

in R2. Any element zC may then be written z=x1+ye with real 

numbers x and y. In particular, there are real numbers a and b such that 

e
2
=a1+be so that z

2
=(x

2
+ay

2
1+(2xy+by

2
e (note that 1 • 1=1,• 1=e. 

Now clearly z
2
 is real if y=0 (since actually z itself is, by the 

identification above. But z
2
 will also be real if x 2y. We then get 

z
2
=(a+y

2
. We can not have a+b > 0 by 

Exercise. since then (z → y→Ja+b
2
(z+y→Ja+bd=0, but neither 

of the factors is 0 unless their e-component y=0. Hence a+b < 0. 

Roughly, we have seen that if we can define a multiplication in R2 which 

makes it into a field with addition being the ordinary vector addition, 
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then there exists an element the square of which is →1 (rather,  the 

additive inverse of the multiplicative neutral element. Denote it by i and 

call it the imaginary unit. If we use 1, i as a basis we may therefore write 

any element in the plane as x1+yi with real x, y. For convenience we will 

actually write it x+iy from now on. 

It is important to note that we have not yet shown that it is possible to 

make a field of the plane; we have just seen that if it is possible,  then we 

may identify the x-axis with the real numbers and the y-axis with the 

multiples of an element, the square of which is →1. 

EXERCISE. Show that if we calculate with symbols x+iy, where x and y 

are real numbers, according to the usual rules for adding and multiplying 

numbers and in addition use i2→ 1, then all the require- ments for a field 

are satisfied. 

From now on the field we have constructed is denoted by C and called 

the field of complex numbers. Note that the field of real numbers is an 

ordered field. This means that we have a relation < defined among the 

real numbers such that 

If x and yR, then exactly one of x < y, y < x and x=y is true. 

Sums and products of positive (i.e., > 0 numbers are positive. 

We have not introduced anything similar for the complex numbers for 

the simple reason that it can not be done. 

EXERCISE. Show that in an ordered field squares of non-zero elements 

are always > 0. Use this to show that if it were possible to make C into an 

ordered field, then both 1 > 0 and →1 > 0, and hence also 0 > 0, a 

contradiction. 

As a final note to this first section, the fact that the Euclidean plane can 

be made into a field is extremely useful in all areas of mathematics and 

its applications. Since we live in a 3-dimensional (at least world, it 

would, from the point of view of applications, be very useful if we could 

make 3-dimensional space into a field as well. In the early part of the 
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nineteenth century, this is exactly what the famous Irish mathematician 

W. R. Hamilton tried, unsuccessfully, to do. 

EXERCISE . Try to show that Hamilton was doomed to fail. To simplify 

things, you may require that the complex plane should be a 2-

dimensional restriction of the 3-dimensional field. Show that the 

existence of divisors of zero can not be avoided. 

Hamilton succeeded (1843 to introduce a multiplication in R4 which 

makes this into a field, with the minor defect that the multiplicative 

group is not Abelian (such a STRUCTURE is called a skew field. 

Hamilton called his STRUCTURE the quaternions; this STRUCTURE 

actually strongly hints that it would be profitable, in physics, to consider 

the world 4- dimensional, with time as the fourth dimension.  

EXERCISE. Consider the set of symbols x+iy+ju+kv, where x, y, u and 

v are real numbers, and the symbols i, j, k satisfy i
2
 = j

2
=k

2
1, ij=-ji=k, 

jk=-kj=i and ki=-ik=j. Show that using these relations and calculating 

with the same formal rules as in dealing with real numbers, we obtain a 

skew field; this is the set of quaternions. 

 

1.3 POLAR FORM OF COMPLEX 

NUMBERS 

A group (G, * is a setprovided with a binary operation 

In the complex number z=x+iy the real number x is called the real part of 

z, x=Re z, and the number y is called the imaginary part of z, y=Im z. 

There is of course nothing imaginary whatever about the imaginary part; 

the reasons for this curious appellation are historic. If we introduce the 

notation z for the complex number x → iy,  called the complex conjugate 

of z, we see that Re z=2(z+z and Imz=1 (z → z. In particular, z is real 

(i.e., has imaginary part 0 precisely if z=z. If z has real part 0, so that 

zz, one calls z purely imaginary. We define the absolute value \z\ of 

z=x+iy to be \z\=\Jx2+y2. This is of course the ordinary length of z, 
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considered as a vector in the plane, provided we draw 1, i as orthonormal 

vectors. A very useful observation is that zz=\z\2. 

EXERCISE. Show this and that for any complex numbers z and w we 

have 

z+w=z+w,   zw=z • w,   \zw\=\z\\w\. 

It is worth remarking how one carries out division by a complex number. 

Since the complex numbers constitute a field, every non-zero complex 

number has a multiplicative inverse, i.e., we can divide by it; namely, if 

z=0 and w are complex numbers, then there is a unique complex number 

u, denoted →, such that zu=w. The question is,  how does one write the 

quotient on the standard form as real part plus i times imaginary part. To 

see how, multAiply through by z to obtain \z\2u=zw. Since \z\2=0 we 

can divide by this (real number, and so u=zw/\z\2. So, to write w/z on 

standard form, multiply numerator and denominator by z. 

EXERCISE. Write 1+2i/3+4i on standard form. 

The geometric interpretation of addition is already familiar, since this is 

the ordinary vector addition in the plane. To get a geometric picture of 

multiplication, we introduce polar coordinates in the plane in the 

following way. If z=0, then z/\z\ is located somewhere on the unit circle; 

hence we can find an angle θ such that z/\z\=cosθ+i sinθ. We may 

therefore write z on polar form as z=\z\(cosθ+i sinθ whereθ is called the 

argument of z and is denoted θ=arg z. It is unfortunate, but extremely 

important that arg z is NOT uniquely determined by z; adding any 

integer multiple of 2n toθ gives another, equally valid,  value for arg z. 

When one therefore speaks of 'the' argument for a complex number, one 

means one of the infinitely many possible values of the argument. 

Another, less serious ambiguity, is that we have not assigned an 

argument to the number 0; it is usual to allow any real number 

whatsoever as a valid argument for 0. 

Now suppose z=|z| (cosθ+i sinθ and w=|w| (cos f+i sin f are complex 

numbers. Then zw=lz||w| (cosθ cos f → sinθ sin f + i(cosθ sin f+sinθ cos 

f=|zw| (cosθ+f+i sinθ+f according to the addition formulas for sin 
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and cos. Thus, when calculating the product of two complex numbers the 

absolute values are multiplied and the arguments are added. In particular, 

multiplication by a complex number of absolute value 1 is equivalent to a 

rotation with an angle equal to the argument of the given number. 

EXERCISE. Write the number z=-\/3+i on polar form and then calculate 

z13 on standard form. 

1.4 SQUARE ROOTS 

 

Working with real numbers it is possible to find the square root of any 

non-negative number; to obtain a unique number the square root is 

required to be non-negative as well. After introducing complex numbers 

we can, for any given real number, find a real or complex number whose 

square is the given number. Of course, not much would be gained unless 

we could actually find the square root of any complex number as well. 

This means that we would like to be able to find a solution to z2=w for 

any complex number w. Suppose w=u+iv and let z=x+iy (in situations 

like this it is always assumed that u,  v, x and y are real numbers. Since 

z2=x2 → y2+2ixy we need to solve the nonlinear system 

x
2
~y

2
=u ,   2xy=v. 

in two real unknowns x and y. Squaring and adding the two equations we 

get, after extracting a (real square root, that x
2
+y

2
=Vu

2
+v

2
 (this simply 

expresses the fact that=|w|, which has to be true in view. 

Note that all the expressions within square roots are non-negative no 

matter what u and v are, so these are ordinary real square roots. therefore 

give all possible solutions, and it is easily verified that the first equation 

is actually satisfied, whereas the second is satisfied if and only if one 

chooses the right combination of signs, so that there are actually always 

precisely two distinct complex numbers z satisfying z
2
=w, unless w=0 in 

which case z=0 is the only solution. Since a quadratic equation can be 

solved by extracting square roots one now easily sees that any quadratic 

equation with complex coefficients always has a complex root. In fact, if 
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counted by multiplicity there are always exactly two roots (we will return 

later to the concept of multiplicity for a root. 

We have seen that we can always extract square roots of a complex 

number w, and that there are always (unless w=0 exactly two such 

numbers. The question arises: Which of the two possibilities are we to 

denote by the symbol y/w? Since the complex numbers are not ordered 

there is no simple answer to this question, as in the real case. To analyze 

the situation we write w=|w| (cosθ+i sinθ on polar form. If z
2
=w, then 

clearly Izl=\j|w|, and if 0 is an argument for z, then 20 must be an 

argument for w. The simplest choice for 0 is therefore to set 0 =θ/2. 

Which number z we get this way obviously depends on the choice ofθ, 

which is only determined up to an integer multiple of 2n. If we add 2n 

toθ we will add n to 0, which will replace z by →z. Adding or 

subtracting further multiples of 2n toθ will not yield any more values for 

z, so we have again seen that there are exactly two square roots of any 

non-zero number. We can write any complex number w on polar form 

with an argument θ in the interval →n < θ < n and choosing the argument 

of the square root to be 0 =θ/2 we will get → f < 0 < n. 

This is one way of assigning a unique value to the square root of any 

complex number. Considering z as a function of w this is called the 

principal branch of the square root; if w is a non-negative real number it 

obviously coincides with the usual real square root. The values of the 

principal branch of the square root are all in the right half plane, i.e., they 

have non-negative real part. There are, however,  other ways of choosing 

a branch of the square root that are sometimes more convenient. On may 

for example restrict θ to the interval 0 < θ < 2n, which will give the 

argument of the square root in the interval 0 < 0 < n, i.e., this branch of 

the root has all its values in the upper half plane. 

Why can one not, once and for all like in the case of the real square root, 

choose a particular branch and stick to it? The reason is problems with 

continuity. Suppose we have a nice curve in the w-plane which intersects 

the negative real axis. If we take the square root of this, using the 

principal branch, the image of the curve in the z-plane will jump from a 

point on the negative imaginary axis to a point on the positive imaginary 
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axis; we have lost the continuity of the curve. Another choice of branch 

might solve the problem for a particular curve, but it is clear that no 

choice of branch will be suitable for all curves. Since there is no choice 

of branch which will work best in all situations one must not use the 

notation \J without specifying which branch of the square root one is 

talking about. 

The need to deal with several different branches occurs for all kinds of 

other complex functions and is a major complicating factor in the theory. 

There is a sophisticated and completely satisfactory solution to the 

problem, namely the introduction of the concept of a Riemann surface. 

Unfortunately, we can not go into that here. 

 

1.5 STEREOGRAPHIC PROJECTION 

Since we have a notion of distance (i.e., d(z, w=\z → w\ in C we may 

view C as a metric space. It is clear that this space is complete in the 

sense that any Cauchy sequence converges; to see this note that since \ 

Re z\ < \z\ and \ Imz\ < \z\ < \ Re z\+\ Imz\ for any z  C it follows that if 

zj=Xj+iyj, j=1, 2, ... is a Cauchy sequence in C, then Xj, j=1, 2, ... and yj, 

j=1, 2, ... are Cauchy sequences in R. Furthermore, if Xj → xR and yj 

→ yR as j → ∞, then Xj+iyj → x+iyC as j → ∞. Thus the 

completeness of C follows from that of R. 

From the point of view of topology, it would be even better if C were 

compact, i.e., any open cover of C should have a finite subcover. This is 

not true, however, as can be seen by considering the open cover of C 

consisting of all open balls \z\ < R centered at 0, which obviously has no 

finite subcover. One can make C compact without changing its topology 

by adding (at least one 'ideal' point and modifying the metric. This one-

point compactification of the complex plane is very important in the 

theory of functions of a complex variable and we will give a very 

enlightening geometric interpretation of it in this section. 

Imagine C as the XiX2-plane in R3 and let S2 be the unit sphere; it will 

intersect C along the unit circle. Call the point (0, 0, 1 on the sphere the 
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North pole N (so that (0, 0, →1 is the South pole. We can map C in a 

one-to-one fashion onto S2 \ {N} by mapping zC onto the point (x1, 

x2, x3S2 such that the straight line connecting z with N goes through 

(x1, x2, x3. This map is called stereographic projection and has many 

interesting properties, as we shall see. In this connection S2 is called the 

Riemann sphere. 

It is nearly obvious that this stereographic projection is a bi-continuous 

map, using the topology induced by the metric of R3. To make 

absolutely sure, let us find the mapping explicitly. The line through N 

and z=x+iyC is (x1, x2, x3=(0, 0, 1+t(x, y, →1. The intersection 

with S2 is given by t satisfying t2(x2+y2+(1 → t2=1 which gives t=0, 

i.e., N, and the more interesting t=2/(x2+y2+1. 

EXERCISE . Show that this metric is given by 

z → w , d(z, w=2-'(\z\2+11/2(\w\2+11/2' 

Also show that the distance between the image of z and N is . 

In view we may now add to C an 'ideal' point to,  the image of which 

under stereographic projection is N. This new set is called the extended 

complex plane and we denote it by C*. Using the metric in C* the 

extended plane becomes homeomorphic to the Riemann sphere with the 

topology of Euclidean distance. Since S2 is compact, so is the extended 

plane; we have compactified the plane. For the statement of the next 

theorem, note that a circle in S2 is the intersection of S2 by a non-

tangential plane, and any such (non-empty intersection is a circle. 

THEOREM. The image of a straight line in C under stereo- graphic 

projection is a circle through N, with N excluded. The image of a circle 

in C under stereographic projection is a circle not containing N. The 

inverse image of any circle on S2 is a straight line together with to if the 

circle passes through N, otherwise a circle. 

PROOF. Since a straight line in the x3x2-plane together with N 

determines a unique plane, the intersection of which with S2 is the image 

of the straight line we only need to consider the case of a circle in C. If it 
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has center a and radius r its equation is |z → a|
2
=r

2
 or |z|

2
 → 2 Re(az+ 

|a|=r
2
. using that x1

2 
+ x2

2
 + x3

2 
= 1 and x3 ≠ 1, we get 1+x3 → 2x1 Re a 

→ 2x2 Im a + (1 → x3(|a|2 → r2= 0 which is the equation of a plane. 

Conversely,  a circle on the Riemann sphere is determined by three 

distinct points. The inverse images of these three points determine a 

circle in C. The image of this circle is clearly the original circle.  

In view of this theorem we will by a circle in the extended plane mean 

either a line together with to, or an actual circle. 

A map is called conformal if it preserves angles and their orientation.        

A surface is given an orientation by assigning to each point a normal                                

direction which varies continuously with the point. For example,  

the usual orientation of C is given by letting at each point the normal 

point upwards, i.e., in our present picture in the direction of the x3-axis. 

Similarly, we may give the Riemann sphere an orientation by letting the 

normal point towards the origin. 

The angle between two smooth curves in an oriented surface at a point of 

intersection of the curves is the angle between the tangents at the point. 

There are two such angles, the sum of which is n. If the curves are given 

in a certain order, the positively oriented angle between them is that 

angle through which one has to turn the first tangent vector so as to 

coincide with the second tangent vector, turn- ing counterclockwise as 

seen from the normal to the surface. A strict definition would of course 

have to be freed from such obviously intuitive geometric concepts, but 

we will not attempt this here. 

THEOREM. Stereographic projection is conformal. 

PROOF. Consider two curves intersecting at z and their tangents at z in 

C. Together with N the tangents determine two planes that intersect the 

Riemann sphere in two circles through N. The tangents to the circles at N 

are in these planes and also in the plane through N parallel to C. It 

follows that they are parallel to the original tangent vectors so that 

viewed from inside the sphere they give rise to an angle equal to but of 
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opposite orientation to the original angle. The circles intersect also at the 

image of z on the sphere, and are tangent to the images of the curves 

there. The angles at the two points where the circles intersect are equal 

but of opposite orientation by symmetry (the two angles are images of 

each other under reflection in the plane through the origin and parallel to 

the normals of the planes of the circles. The theorem now follows.   

Although the proof above is very geometric in nature it is actu- ally not 

difficult to make it analytic, using the fact that stereographic projection is 

a differentiable map, but we will not do that here. 

1.6 MOBIUS TRANSFORMS 

A Mobius transform (also called a linear fractional transformation 

is a non-constant mapping of the form z → f (z for complex 

cz+d 

numbers a, →, c and d. To begin with we consider this defined in C 

except, if c=0, for z=-d/c. The fact that the mapping is non- constant 

means that (a, → is not proportional to (c, d. This can be expressed by 

requiring ad - →c=0 which is always assumed from now on. Clearly we 

get the same mapping if we multiply all the coefficients a, →, c, d by the 

same non-zero number so that although the mapping is determined by the 

matrix (fbd any non-zero multiple of this matrix gives the same 

mapping. The requirement ad - →c=0 means that the determinant is ≠ 0 

so multiplying by an appropriate number we may always assume that the 

determinant is 1. This determines the coefficients up to a change in sign 

of all of them. 

It is clear that if c ≠ 0, then f (z → ∞ to as z → ∞ to. On the other hand, 

if c ≠ 0, then f (z → ∞ to as z → -d/c and f (z → a/c as z → ∞ to. We 

may therefore extend the definition of f to all of the extended plane C* in 

such a way that the extended function is a continuous function of C* into 

C*. We will always consider Mobius transforms as defined in the 

extended plane, or equivalently on the Riemann sphere, in this way. We 

have the following interesting proposition. 
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PROPOSITION. If f andare Mobius transforms correspond- ing to the 

matrices A and B, then the composed map f ois a Mobius transform 

corresponding to the matrix AB. 

EXERCISE  

Since the set of all non-singular 2 x 2 matrices is a group under matrix 

multiplication, it follows that so are the Mobius transforms. This means 

that any Mobius transform has an inverse which is also a Mobius 

transform. 

EXERCISE. Find all Mobius transforms T for which T
2
=T. 

Among other things this means that a Mobius transform is a home- 

omorphism of the extended plane onto itself, i.e., a continuous one- to-

one and onto map whose inverse is also continuous. But Mobius 

transforms have more surprising properties. Recall that we by a circle in 

the extended plane mean either an actual circle in the plane or a straight 

line together with to. 

Theorem. Mobius transforms are conformal and circle-pre- serving, i.e., 

any circle in the extended plane is mapped onto a circle in the extended 

plane.  

EXERCISE. Prove the theorem by calculation, not using stereographic 

projection. 

Note that since removing a circle from the extended plane leaves a set 

with exactly two components, and since Mobius transforms are 

continuous in the extended plane, the interior of any circle in the plane is 

mapped either onto the interior or onto the exterior, including to,  of 

another circle. This follows from the fact that continuous maps preserve 

connectedness. 

EXERCISE. Prove the statement above in detail. 

Sets that are left invariant under a mapping are obviously important 

characteristics of the map. For a Mobius transform one may for exam- 

ple ask which circles it leaves invariant, or conversely, which Mobius 

transforms leave a given circle invariant. We will consider some such  
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problems later. Right now we will instead ask for fixpoints of a given 

transform, i.e., points left invariant by the map. By our definition of the 

image of to, this is a fixpoint if and only if the map is linear. A linear 

map z → az+b also has the finite fixpoint z=b/(1 → a, except if a=1. 

Thus, a translation which is not the identity has only the fixpoint to, but 

any other linear map which is not the identity has exactly one finite 

fixpoint as well. For a Mobius transform z → az+d with c=0 the equation 

for a fixpoint becomes z(cz+d=az+b which is a quadratic equation. It 

therefore has either two distinct roots or a double root. We have therefore 

proved the following proposition. 

PROPOSITION. A Mobius transform different from the identity has 

either one or two fixpoints, as a map defined on the extended plane. 

PROPOSITION. Suppose z1, z2, z3 are distinct points in C*. The unique 

Mobius transform taking these points to 1, 0, to in order is z → (z, zi, z2, 

z3. 

It is now clear that to find the unique Mobius transform taking the 

distinct points z1, z2, z3 into the distinct points w1, w2, w3 in order, one 

simply has to solve for w in (w, w1 , w2, w3=(z, z1, z2, z3. 

EXERCISE. Find the Mobius transformation that carries 0, i,  →i in 

order into 1, →1, 0. 

EXERCISE. Show that any Mobius transformation which leaves R U 

{^o} invariant may be written with real coefficients. 

EXERCISE. Show that the map the right half- plane (i.e., the set Rez > 

0 onto the interior of the unit circle. 

Two points z and z* are said to be symmetric with respect to R if z*=z. If 

T is a Mobius transform that maps R U {∞} onto itself, then one may 

write T with real coefficients. It follows that Tz and T(z* are symmetric 

with respect to the real axis if and only if z and z* are. To generalize the 

concept of symmetry with respect to the real axis to symmetry with 

respect to any circle in the extended plane we make the following 

definition. 



Notes 

24 

DEFINITION. Let r be a circle in C*. Two points z and z* are said to be 

symmetric with respect to r if there is a Mobius transform T which maps 

r onto the real axis for which T(z*=Tz. 

By the reasoning just before the definition it is clear that this is a genuine 

extension of the notion of conjugate points and that z and z* are 

symmetric with respect to r precisely if T(z*=Tz for any Mobius 

transform T that takes r to the real axis. For, if T and S both take r onto 

the real axis and T(z*=Tz, then U=ST-1 maps the real axis onto itself so 

that S(z*=UT(z*=U(Tz=UTz=Sz. There is therefore for every z 

precisely one point z* so that z, z* are symmetric with respect to r. A 

similar calculation proves the next theorem. 

THEOREM. Suppose S is a Mobius transform that takes the circle 

C* onto the circle ’C*. Then the points z and z* are symmetric 

with respect to r if and only Sz and S(z* are symmetric with respect to 

D. 

PROOF. If T maps r onto the real axis, then U=TS-1 maps r onto the real 

axis. But US(z*=T(z* and USz=Tz so that US(z*=USz if and only if 

T(z*=Tz. The theorem follows.   

In short, Theorem says that symmetry is preserved by Mobius 

transforms. The next theorem allows us to calculate the symmetric point 

to any given z and circle. 

THEOREM. If  is a straight line, then z and z* are symmetric with 

respect to r precisely if they are each others mirror image in . If  is a 

genuine circle with center a and radius R, then a and to are symmetric 

with respect to . If z is finite and=a, then z and z* are symmetric 

precisely if (z* → a(z → a=R2. 

PROOF. If  is a straight line it is mapped onto the real axis by a 

translation or a rotation and these transformations obviously preserve 

mirror images. 

If  is a circle with center a and radius R the map z - z→a→R/z-a+R 

takes  onto the real axis  
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Now a and to are mapped onto →i and i respectively, so they are a 

symmetric pair. If z has neither of these values a simple calculation 

shows that z and z* are mapped onto conjugate points precisely if (z* → 

a(z → a=R2.   

In particular the fact that the center of a circle and to are symmetric with 

respect to the circle are often very helpful in trying to find maps that take 

a given circle into another. 

EXERCISE. Find the Mobius transform which carries the circle jzj=2 

into jz+1|=1, the point →2 into the origin, and the origin into i. 

EXERCISE. Find all Mobius transforms that leave the circle jz I=R 

invariant. Which of these leave the interior of the circle invariant? 

EXERCISE . Suppose a Mobius transform maps a pair of con- centric 

circles onto a pair of concentric circles. Is the ratio of the radii invariant 

under the map? 

EXERCISE  Find all circles that are orthogonal to jzj=1 and jz → 1| =4. 

We will end this section by discussing conjugacy classes of Mobius 

transforms. 

DEFINITION. Two Mobius transforms S and T are called con- jugate if 

there is a Mobius transform U such that S=U-1TU. 

Conjugacy is obviously an equivalence relation, i.e., if we write S ~ T 

when S is conjugate to T, then we have: 

S ~ S for any Mobius transform S. (reflexive 

If S ~ T, then T ~ S (symmetric 

If S ~ T and T ~ W, then S ~ W. (transitive It follows that the set of 

all Mobius transforms is split into equivalence classes such that every 

transform belongs to exactly one equivalence class and is equivalent to 

all the transforms in the same class, but to no others. 
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EXERCISE Prove the three properties above and the statement about 

equivalence classes. What are the elements of the equivalence class that 

contains the identity transform? 

The concept of conjugacy has importance in the theory of (discrete 

dynamical systems. This is the study of sequences generated by the 

iterates of some map, i.e., if S is a map of some set M into itself,  one 

studies sequences of the form z, Sz, S2z, ... where zM. This sequence 

is called the (forward orbit of z under the map S. One is particularly 

interested in what happens 'in the long run', e.g., for which z's the 

sequence has a limit (and what the limit then is, for which z's the 

sequence is periodic and for which z's there seems to be no discernible 

pattern at all ('chaos'. Note that if S=U
-l
TU, then Sn=U

-1
TnU so that all 

maps in the same conjugacy class behave qualitatively in the same way, 

at least with respect to the properties  

listed above. It therefore seems natural to try to find, in each conjugacy 

class, some particularly simple map for which the questions above are 

particularly simple to answer. In other words, one looks for a 'canonical 

representative' in each equivalence class. We will carry out this for the 

case of Mobius transforms. 

If S=U
-1

TU and z is a fixpoint of S, then Uz is a fixpoint of T since 

TUz=USz=Uz. If S has only one fixpoint zo we may choose V so that 

Vz0=to. Then VSV
-1

 has only the fixpoint to and is therefore a 

translation z → z+b for some b=0. If we set U
=1

V it follows that USU
-

1
z=z+1. If S has two fixpoints z1 and z2 we may choose U so that Uz1=0 

and Uz2=∞. Then T=USU
-1

 has the fixpoint o, so it is linear, Tz=az+b, 

and it also has the fixpoint 0,  so b=0. Now set, for A=0,  z+1 for A=1,  

Az for 0=A=1 . 

We have then proved most of the following theorem. 

THEOREM. For every Mobius transform S different from the identity 

there exists A=0 such that S ~ T\. If T\ ~ T, , then either A=fx or A=1/x. 

PROOF. It only remains to prove the last statement. But this is clear if 

A=1, since this is the only value for which T\ has just one fixpoint. We 
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may therefore assume that A and x are both=1 (and of course non-zero. 

But if UT\=T, , U and Uz=az+b  

for all z. Since ad → bc=0 we can not have d=c=0. If d=0, setting z=0 

gives b/d=xb/d so that b=0 and therefore a=0. If now c=0,  setting zd/c 

we get o on the right but not the left. It follows that c=0 becomes A=x. 

On the other hand, if d=0 we must have c=0 and so z=o gives a/c=xa/c. It 

follows that a=0. In this case becomes A=1/x and the proof is complete.

   

What we have proved is that each conjugacy class different from the 

class of the identity contains one of the operators T\ and also T]_/\, but 

no other operators of this form. We may therefore with any Mobius 

transform S associate the corresponding unique (non-ordered pair (A, 

1/A of reciprocal complex numbers, called the multiplier of S. The 

multiplier is thus a conjugacy invariant. Note that some T\ leave the 

interior of certain circles in the extended plane invariant. Namely,  T1 

leaves all halfplanes above or below a horizontal line invariant. If A > 0 

(but =1, then T\ leaves all halfplanes bounded by a line through the 

origin invariant. Finally, if |A|=1 but A =1, then T\ leaves the interiors 

and exteriors of any circle concentric with the origin invariant.                                       

On the other hand, if A is neither positive nor of absolute value 1 there is 

no disk which is invariant under T\. Show this as an exercise! The 

transforms in the conjugacy class of T1 are called parabolic, those in the 

conjugacy class of T\ for some A > 0 but=1 are called hyperbolic and 

those in the conjugacy class of T\ for some A =1 with |A|=1 are called 

elliptic. The reason for these names will be clear from the result of The 

remaining Mobius transforms are called loxodromic. This is because they 

are conjugate to a T\ for which the sequence of iterates z, T\z, Tfz, ... lie 

on a logarithmic spiral, which under stereographic projection becomes a 

curve known as a loxodrome. 

EXERCISE. Show that a linear transformation which satisfies Sn=S for 

some integer n is necessarily elliptic. 

EXERCISE. If S is hyperbolic or loxodromic, show that Snz converges 

to a fixpoint as n → ∞, the same for all z which are not equal to the other 
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fixpoint. The exceptional fixpoint is called repelling, the other one 

attractive. What happens when n →∞ What happens in the parabolic and 

elliptic cases? 

EXERCISE. Find all linear transformations that are rotations of the 

Riemann sphere. 

Hint: The antipodal point to a point on the unit sphere is obtained by 

multiplication by -1. Use the fact that an antipodal pair is mapped onto 

an antipodal pair by a rotation. 
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1.7 LET US SUM UP 

In this unit we have discussed the definition and example of Complex 

Functions, The Complex Number System, Polar Form Of Complex 

Numbers, Square Roots, Stereographic Projection, Mobius Transforms  

  

1.8 KEYWORDS 

Complex Functions.. A group (G, * is a setprovided with a binary 

operation 
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The Complex Number System.. In the complex number z=x+iy the real 

number x is called the real part of z 

Polar Form Of Complex Numbers.. Working with real numbers it is 

possible to find the square root of any non-negative number; 

Square Roots.. Since we have a notion of distance (i.e., d(z, w=\z → w\ 

in C may view C as a metric space 

Stereographic Projection.. A Mobius transform (also called a linear 

fractional transformation 

Mobius Transforms .. is a non-constant mapping of the form z - f 

(zfor complex cz+d 
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UNIT  -  II: ANALYTIC FUNCTIONS 

 

STRUCTURE 

2.0 Objectives 
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2 .2 Analytic Functions ….. Conformal Mappings And Analyticity 

2.3 Analyticity Of Power Series; Elementary Functions 

2.4 Conformal Mappings By Elementary Functions 

2.5 Let Us Sum Up   

2.6 Keywords   

2.7 Questions For Review   

2.8 Answers To Check Your Progress 

2.9 References  

2.0 OBJECTIVES 

 

After studying this unit,  you should be able to Learn,  Understand about 

Analytic Functions Conformal Mappings And Analyticity Analyticity Of Power 

Series; Elementary Functions Conformal Mappings By Elementary Functions 

2.1 INTRODUCTION 

In this part of the course we will study some basic complex analysis. 

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematic 

In this section we will study complex functions of a complex variable, 

Analytic Functions, Conformal Mappings And Analyticity, Analyticity 

Of Power Series; Elementary Functions, Conformal Mappings By 

Elementary Functions 
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2.2 ANALYTIC FUNCTIONS 

CONFORMAL MAPPINGS AND 

ANALYTICITY 

DEFINITION. A map f : Q → C, where Q is an open subset of C, is 

called conformal if it satisfies the following conditions: 

As a map from a subset of R2 into R2, f is differentiable. 

f preserves angles of intersection between smooth curves. 

f preserves orientation in the sense that the determinant of the total 

derivative of the map is > 0. 

To explain the definition in more detail, note that if z=x+iy,  where x and 

y are real, then f (z=u(x, y+iv(x, y where u and v are real-valued 

functions of two real variables, so the action of f can also be 

described by the mapping (X → f(X'yj . The first condition of the 

definition then says that this map should be differentiable. Recall that 

this implies that the partial derivatives ux, uy, vx and vy exist and that 

the chain rule can be applied when composing with other differentiable 

maps. Also recall that the existence of the partials is not enough to 

guarantee differentiability, but if the partials are continuous, then the 

map is differentiable. 

We measure the angle between two non-zero vectors a and ftRn by 

the expression usual scalar product and || • || the Euclidean norm (the 

actual angle is arccos of this. If t → y(t=Yi(t+iy2(t is a differentiable 

curve in Q, then its tangent 

vector is y' or, expressed as a column vector. The image f o y of 

Y under f is another differentiable curve. According to the chain rule 

its tangent vector is J → where J=(fx "ff is the Jacobi matrix or 

total derivative of the map. The second point of the definition then means 

that the linear map given by the Jacobi matrix maps any two vectors onto 
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two vectors which make the same angle as the original vectors. The third 

point simply means that the Jacobian|U|= uyvy → uy vy A 0 in Q. 

EXERCISE. Show that the map z → z satisfies the two first points of 

Definition but reverses the orientation (i.e., the Jacobian is < 0. Such a 

map is called anti-conformal. Show that any anti-conformal map is of the 

form z → f (z where f is conformal. 

This shows that there is really no need to study anti-conformal maps 

separately from conformal maps. 

We have the following basic theorem. 

THEOREM. Suppose f=u+iv is conformal in Q. Then the partials of u 

and v satisfy the Cauchy-Riemann equations 

Conversely, if (f satisfy the Cauchy-Riemann equations, the 

corresponding map is differentiable, and its Jacobi matrix does not 

vanish at any point in Q, then the map is conformal. 

PROOF. Suppose f is conformal and let a and (3 be the column vectors 

in the Jacobi matrix. Since multiplication by the Jacobi matrix preserves 

angles the vectors (1 and (1 are mapped onto orthogonal vectors, i.e., a 

and 3 are orthogonal. Similarly, the vectors (1 and (-1 are mapped onto 

orthogonal vectors. Since the scalar product of a+3 and a → 3 is ||a||2 → 

||31|2 it follows that a and 3 also have the same length. To preserve 

orientation we must choose the plus sign. It follows that any conformal 

map satisfies the Cauchy-Riemann equations. 

Conversely, if the map satisfies the Cauchy-Riemann equations, is 

differentiable, and has non-vanishing Jacobi matrix, then this matrix is 

→Ju
2
x+uy O where O is an orthogonal matrix with determinant one,  i.e., 

a rotation. The map is therefore conformal.   

EXERCISE. Show that the map z → z
2
 is conformal in any open set not 

containing the origin. 

We will now connect the geometric notion of a conformal map with the 

analytic notion of complex derivative. We first need a definition. 
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DEFINITION. A complex-valued function f defined in an open subset of 

C is said to be differentiable at a if 

lim f (Z → f (a 

z→a z → a 

exists. The limit is called the derivative of f at a and is denoted by 

f '(a. 

All the elementary properties of derivatives that we know from the 

theory of a real function of one variable continue to hold, with essentially 

the same proofs. We collect some such properties in the next theorem. 

THEOREM. Suppose that f is differentiable at a. Then 

f is continuous at a. 

Cf is differentiable at a with derivative Off (a for any con- stant C. 

Ifis differentiable at a, then so is f+g, fg and, if g(a=0,  f/g and (f+g, 

(a=f'(a+ g'(a 

(fg, (a=f'(ag(a+f (ag'(a (f/g(a=(f'(ag(a → f (ag' (a/g(a2 

Ifis differentiable at f (a, theno f is differentiable at a and the chain 

rule (g o f '(a=g'(f (af'(a is valid. 

If f'(a=0 and the inverse f-1 is defined in a neighborhood of f (a and is 

continuous at b=f (a, then the inverse is differentiable at b and (f-

1'(b=1/f'(a. 

Polynomials and rational functions are differentiable where they are 

defined (as functions in C and their derivatives are calculated in the 

same way as in the case of real polynomials and rational functions. 

EXERCISE. Show that any branch of ffz is differentiable for z=0 and 

calculate the derivative that if f is differentiable in a neighborhood of a, 

then the assumption f'(a=0 implies all the other assumptions of 

Theorem. We are now ready to state the second main result of this 

section. 



Notes 

34 

THEOREM. f=u+iv has a complex derivative at z=a+ib if and only the 

map is differentiable and the Cauchy- Riemann equations are satisfied at 

(a, b. We also have 

f'(z = ux(x, y+ivx(x, y=Vy(x, y → iu'y(x, y. 

PROOF. For f to be differentiable with derivative a+ib at z=x+iy means 

that 

\f(z+w → f(z → (a+ibw\=\w\r(w where r(w → 0 as w → 0 . 

Similarly, for (U to be differentiable at (x, y with a Jacobi matrix (-ba 

satisfying the Cauchy-Riemann equations means that 

where p(h, k → 0 as (h, k → 0. But if f=u+iv and w=h+ik the left hand 

sides of these two relations are equal so the theorem follows.Ifis a 

complex-valued function of a real variable with real and imaginary parts 

u and v respectively, we say thatis differentiable if u and v are, and 

define g'=u'+iv'. Using the equivalence in Theorem it then follows from 

the chain rule for vector-valued functions of several variables that ifis 

a complex-valued, differentiable function of one variable with range in 

the domain of a complex differentiable function f, then the chain rule df 

(g(t=f'(g(tg'(t is valid. 

There are some alternative ways of expressing the Cauchy-Riemann 

equations which are sometimes used. If we view f as a function of x=Re 

z and y=Im z it is clear that the Cauchy-Riemann equations are 

equivalent to f'x+if'y=0. Note also that this means that if the complex 

derivative f' exists, then f'=f'x=-if'. 

The differential of f as a function of (x, y is df=f'xdx+f 'dy, in particular 

dz=dx+idy and dz=dx → idy. We can therefore write df=1 (fX → if'dz 

+1 (fX+if'dz and for this reason one introduces the notation 2d=2 (f'x → 

if' and 2d=2 (f'x+if'. The Cauchy-Riemann equations may then be 

expressed as 2d-=0, and then 2d=f'. 

We also have df=2d dz+2d dz, so if we introduce the holomorphic 

differential d by df=2d dz and the anti-holomorphic differential d by 

df=2d dz and the Cauchy-Riemann equations may also be written as 
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df=0. An analytic function is therefore a solution of the homogeneous d 

equation (pronounced d-bar equation. This also means that f is analytic 

if df=df=2d,  dz=f'(z dz. 

Definition. A function f : M → C where M C C is called analytic in M if 

it is defined and differentiable in some open set con- taining M. 

Note that to say that f is analytic in a means more than just having a 

derivative in a; f has to be differentiable in a whole neighborhood of a. A 

function which is analytic in an open set Q is often said to be 

holomorphic in Q, and the set of functions which are holomorphic in Q is 

often denoted H(Q. 

Practically always the only domains of analyticity that are of inter- est 

are connected. There are two notions of connectivity in common use,  

arcwise connectivity which is used in calculus, and the more general 

notion of connectivity from topology. Since we are always considering 

open domains, it makes no difference whether you use one or the other,  

since they are equivalent for open sets. For convenience, we will use the 

word region to denote an open, connected subset of the complex plane 

(or, occasionally, of the Riemann sphere. 

We end by a simple result that we will use in the next section. 

Theorem. Suppose f is analytic in a region Q and that f '(z=0 for all z  

Q. Then f is constant in Q. 

 

We will actually prove much stronger results later; in fact it will be 

enough to assume that the zeros of f' has a point of accumulation in Q for 

the conclusion to be valid. 

PROOF. If zQ and wC is sufficiently close to z, then the line 

segment between z and w is entirely in Q. For 0 < t < 1 we then obtain d 

f (z+t(w → z=f '(z+t(w → z(w → z=0 using the remark after the 

proof of Theorem Thus Re f and Im f are constant on the line segment. In 

particular, f (z=f (w so that f is locally constant. Now pick aQ and 

let A={zQ|f (z=f(a}. Then A is open by what we just saw. But also 
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Q \ A is open for the same reason. Since aA we have A=0. Since Q is 

connected we therefore must have Q \ A=0, i.e., A=Q. In other words, f 

is constant.   

2.3 ANALYTICITY OF POWER SERIES; 

ELEMENTARY FUNCTIONS 

We will first continue the study of power series begun in First of all, if a 

power series really behaves 'like a polynomial of infinite order', then we 

should be able to differentiate the series like a finite sum, i.e., term by 

term, and actually obtain the derivative of the sum of the series. 

In order to prove this, we first note that the usual derivative and integral 

of a function of one variable extends to the case of a complex- valued 

function of a real variable in an obvious manner. If f is such a function, 

with real and imaginary parts u and v, we simply define 

f'(t=u'(t+iv'(t and 

fJ f (t dt=fJ u(t dt+i fJ v(t dt. This 

means that we define f as differentiable respectively integrable if its real 

and imaginary parts have these properties. 

fIt immediately follows that the fundamental theorem of calculus d J* f=f 

(t holds also for complex-valued, continuous functions f. It is also more 

or less obvious that the usual calculation rules for deriva- tives and 

integrals continue to hold. In particular, the integral is inter- val additive 

and linear 

for a < c < b and arbitrary constants a and ft  

if f andare both integrable on [a, b]. We also have the triangle 

inequality 

f (t dt < / f (tl dt- 

This is less obvious, but follows from 

Ad I f\ I td „ I Ad . 
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Re (e" f=Re(e'df < 

by choosingθ arg( f. 

As already mentioned we also have the chain rule df (g(t = f'(g(tg'(t 

if f is analytic andis a differentiable complex-valued function of a real 

variable. Thus, if f is analytic in a region containing the line segment 

connecting z and z+h, then dt f (z+th=hf '(z+th so that h(f (z+h → f 

(z=f'(z+th dt if the derivative is contin- uous. An immediately 

consequence is the following lemma. 

LEMMA. Suppose f is analytic with continuous derivative in a compact 

set K containing the line segment connecting z and z+h where h=0. Then 

we have |h(f (z+h → f (z\ < supK \f'\. 

PROOF. By the triangle inequality we obtain 

J f'(z+th dt < J \f'(z+th\dt < sup |f'|. 

EXERCISE. Prove the theorem without assuming f' to be con- tinuous. 

We can now state our theorem about differentiating power series. 

THEOREM. If the series f (z→2kL0 ak(z → ak has conver- gence 

radius R, then f has derivatives of all orders for \z → a\ < R. The 

derivatives are calculated by term by term differentiation, and the 

resulting series all have radius of convergence R. In particular,  

f'(z=Ekak(z → ak-1. 

PROOF. We will prove the statement for the first derivative. The 

statement for the higher derivatives then follows immediately. Clearly 

kak(z → a) 

has the same radius of convergence as ™=1 kak(z → ak and since kk i 

as k →∞ to, it follows from Theorem thathas the same radius of 

convergence as f. 

If r → R the series fc=1 k\ak\rk-1 converges, and 

-(f (z+h → f (z=2 h((z+h→ak → (z → ak -k=1 
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Now fix z, \z → a\ < r. Then the terms of this series are continuous 

functions of h, with value kak(z → ak→1 for h=0. By Lemma  the terms 

have absolute value less than k\ak\rk-1 if \z → a\ < r and \z+h → a\ < r, 

so according to Theorems 1.46 and 1.47 the sum is a continuous function 

of h in \z+h → a\ < r. For h=0 its value is h(f(z+h → f(z and for h=0 

the value is g(z. Thus f is differentiable and f'(z=g(z for any z 

satisfying \z → a\ < R.   

We will use Theorem to introduce some more elementary functions.                                          

It is clear that the series E→0 k converges for all z so that the following 

definition is meaningful. 

Definition. For any zC, let            

ez=Er=0 i., → zz 

sin z- 2t  

cos z=ezz+—e →e 

These are all analytic functions in the whole plane. Such a function is 

called entire. From the definition follows immediately that e0=1,  sin0=0 

and cos0=1. Furthermore, d/dz ez=ez, d/dz cos z sin z 

and ddz sin z=cos z. It also follows that sin is odd (sin→z=— sin z and 

cos even (cos→z=cos z and that we have the power series 

v (— 1k 2k+1 J v (—1k 2k 

expansions sin zk=0 zZk+1 and cos z k=0 →r z2k. 

Theorem. The functions of Definition satisfy the follow- ing functional 

equations: 

ez+w=ezew, for any complex numbers z and w. 

sin(z+w=sin z cos w+cos z sin w,  

cos(z+w=cos z cos w → sin z sinw 

for any complex numbers z and w. 
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Note that the particular case w z of shows that e→zez=1 so that ez=0 

for all zC. 

Proof. Given wC, let f (z=e→zez+w. This is an entire func- tion with 

derivative f'(z=—e→zez+w+e→zez+w=0 so it is constant by Theorem. 

Setting z=0 we obtain e→zez+w=ew for all z and w. The special case 

w=0 shows that e→zez=1 so that e→z=1/ez. The first formula now 

follows; the other formulas follow immediately from this by inserting the 

definitions of sin and cos in the formulas to the right.   

Theorem. We have \ez\=eRez. There exists a smallest real number n > 0 

such that sinn=0, and this number satisfies 2.8 < n < 3.2 The exponential 

function has period 2ni, the functions sin and cos period 2n. All other 

periods are integer multiples of these. 

PROOF. First note that (cos y+i sin y by Theorem. Since the 

coefficients in the power series for ez are all real it follows that as a 

function of a real variable, ex is real-valued. It is also > 0,  since it is 

continuous, never=0 and e0=1 > 0. Since it is also its own derivative it 

follows that it is strictly increasing (and strictly convex. For similar 

reasons cos and sin are real-valued for real arguments and since 

 cos2 z+sin2 z=1 

(take wz in Theorem it follows that cos y+i sin y is a point on the unit 

circle for yR. Hence \ez\=eRez. 

We next note that if a real, continuous and non-constant function is 

periodic, then all its periods are integer multiples of its smallest positive 

period. First of all, since y is a period if and only if →y is,  there are 

positive periods if there are any. Next, if there are arbitrarily small 

periods > 0, then given x and> 0 we can find a period a,  0 < a 

<and an integer p such that \ap → x\ < e. Now f (0=f (ap and by 

continuity f (ap → f (x as→ 0, so f is constant. Also note that the set 

of periods of f is closed, since if yj → y and all yj are periods, then f 

(y+x=lim f (yj+x=f (x, so that also y is a period. If f is non-constant it 

therefore has a smallest positive period a, and if b is another period, then 

for any integer q, b → aq is a period. But if q is the integer quotient and r 
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the remainder when dividing b by a, then 0 < r=b → aq < a. So, a can not 

be the smallest positive period unless r=0. 

If now w is a period for the exponential function so that ez=ez+w for all 

z, we see that this is equivalent to ew=1. Taking absolute values it 

follows that Re w=0. Setting w=iy we see that y is a real period for both 

sin and cos. Note that neither of these functions can have non-real 

periods since we immediately obtain from Theorem respectively that w is 

a period of either of these functions if and only if sin w=0 and cos w=1. 

By the first of these relations follows from the second, which may be 

rewritten as (eiw → 12=0. This is true if and only if iw is a period for 

ez. Therefore, sin and cos have the same periods, they are real and y is 

the smallest positive period of the trigonometric functions if and only if it 

is the smallest positive number for which cos y=1. 

Now cos y =1 → 2 sin2|according to Theorem It follows that y is the 

smallest positive number for which cos y=1 if and only if|is the smallest 

positive zero of sin. We must then have                                    cos y1 

and there can be no smaller positive numbers for which cos takes the 

value →1. Now cos y=2 cos2 y → 1 so that 2 has this property if and 

only if 4 is the smallest positive zero for cos. It now only remains to 

show that cos actually has a smallest positive zero, and to estimate its 

value. 

 Since cos is continuous the set of its non-negative zeros is a closed set 

and therefore has a smallest element if it is non-empty.  we have cos x < 

1 for real x and integrating this from 0 to x > 0 four 2 3 

times we get in turn sin x < x, 1 → cos x < Z, x → sin x < X and 2 4

 2 

x→ 1+cos x < X4. It follows that for x > 0 we have 1 → Xy < cos x < 24 

1 → X-+x_ (this may also be deduced from the fact that the power series 

for cos is an alternating series. The first positive zeros of the two 

polynomials are Z2 > 1.4 and \J6 → 2y→3 < 1.6 respectively. It follows 

that cos has a smallest positive zero which is in the interval (1.4, 1.6. 

The proof is now complete.   
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One may easily continue to define strictly all the usual (real functions                                    

of elementary calculus and prove all the usual properties of them. We 

will assume this done; in particular x is the arclength of the arc of the 

unit circle beginning at 1 and ending at e→x=cos x+i sin x, so x is the 

angle between the rays through these points starting at 0. We will also 

use the common properties of the inverse tangent function. 

If we want to extend the definition of the logarithm to the com- plex 

domain, we should find the inverse of the exponential function. 

However, since the exponential function is periodic it has no inverse 

unless we restrict its domain appropriately (cf. the definition of the 

inverse trigonometric functions. To see how to do this, let us attempt to 

calculate the inverse of the exponential function, i.e., to solve the 

equation z=ew for a given z. 

We first note that we must assume z=0, since the exponential function 

never vanishes. Taking absolute values we find that \z\=eRew so that Re 

w=ln \z\, where ln is the usual natural logarithm of a positive real 

number. Now cos0=1 and cos n1 and since cos is continuous, it takes all 

values in [—1, 1] in the interval [0, n]. Since Re Z[—1, 1] we can find 

x[0, n] such that cos x=Re Z. It follows that sin x=± Im Z. Changing 

the sign of x changes the sign on sin x but leaves cos x unchanged. 

Therefore either eiX or e-iX equals Z\. 

We may therefore solve the equation for w given any z=0. If wi and w2 

are two solutions, it follows that eWl-W2=1, so that w1 and w2 differ by 

an integer multiple of 2ni. We call any permissible value of Imw an 

argument for z, and denote any such number by arg z. We should 

therefore define log z=ln\z\+i arg z. To get an actual (single-valued 

function, we must make particular choices of arg z for each z. We shall 

see later that in order to be able to this and obtain a continuous function, 

we can not allow all of C \ {0} in the domain. Intuitively it is clear that 

we must choose the domain such that there are no closed curves in it that 

'go around' the origin, since following such a curve we would have 

changed the argument continuously by an                            integer 

multiple of 2n when we arrive back at the starting point. This leads to the 

following concept. 
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DEFINITION. A connected subset of the Riemann sphere is called 

simply connected if its complement is connected. 

If Q is a region where we want to define a single-valued, continuous 

argument function, it must not contain 0 or to, and to exclude the 

possibility of having a closed curve in Q that 'winds around' 0, we should 

exclude from Q a connected set containing both 0 and to. Now suppose 

we have selected a region Q which is simply connected in C and does not 

contain 0, and one of the possible arguments for some point in Q. It 

seems plausible that this should determine a single-valued,  continuous 

logarithm in Q that this is the case; we call such a function                                      

a branch of the logarithm. 

The most important example is obtained when one chooses Q to be C 

with the non-positive part of the real axis removed, and fixes the 

argument at 1 to be 0. This is called the principal branch of the 

logarithm. The argument of any number in Q is determined by the 

requirement that it is in (—n, n. The notation Log with a capital L is 

sometimes used for this branch. 

Another important case is when one instead removes the non-nega- tive 

real axis and fixes the argument at →1 to be n. The argument is then in 

the interval (0, 2n. Other choices are obtained when one removes from 

C any smooth, non self-intersecting curve starting at 0 and ending at to. 

In any case, it is not possible to talk about the complex logarithm without 

specifying which branch one is dealing with. 

THEOREM. Any branch of the logarithm is analytic with de- rivative 

1/z. 

PROOF. For any z=x+iy we have log(x+iy=u(x, y+iv(x, y where u(x, 

y=2 ln(x2+y2 and v(x, y=arctan X+kn, where k is some integer except 

if x=0 in which case v(x, y=n → arctan →+kn. By continuity the same 

value of k has to be used in any sufficiently small neighborhood of z. 

Differentiating we therefore get ux(x, y = 

XX+yZ , uy(x, y=X2+y2 , vx(x, y=— X2+y2 and vy(x, y=X2+y2 so 

that the Cauchy-Riemann equations are satisfied. Since the partials are all 
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continuous for (x, y=(0, 0, the function is analytic by Theorem. The 

derivative is ux+ivx=X2+y2=1 so the proof is complete.   

We are now able to define arbitrary powers of any complex number w=0. 

We set wz=ez logw, where log is some branch of the logarithm,  giving 

rise to a branch of the power. By varying the branch, there is therefore in 

general infinitely many values of the power; e.g., i=elog1 and since log 

i=ln 1+i arg i the possible values of log i are i(n+2kn, where k is an 

integer. Hence the possible values of f are e-2-2kn. There are therefore 

infinitely many possible values (note that they are all real!. In some 

cases the situation is simpler, however; if w is real > 0 one always uses 

the principal branch of the logarithm so that wz for real z is the 

elementary exponential function with base w. 

One can of course also view the exponent as fixed and the base as the 

variable; these are the power functions z → za. If a is an integer it is clear 

that the choice of branch for the logarithm is irrelevant; the function 

coincides with the elementary concept of a power function. If a is 

rational=ff where m > 0 and n are integers with no common factors, there 

are exactly m possible values of za for each z=0; one usually says that 

there are m branches. This agrees with our discussion of the square root. 

If a is irrational or non-real, however there are always                                  

infinitely many branches of the power. Different powers are said to be of                              

the same branch if they are defined through the same branch of the 

logarithm. 

THEOREM. Any branch of za is analytic (in its domain with derivative 

aza-1,                   using the same branch. 

Proof → ealog z=a ea log z=ae (a-1 log z  

If a is real and > 0 the power function is also defined for z=0,  with value 

0 and if a=0 the power function is the constant 1. 

 

2.4  CONFORMAL MAPPINGS BY  

ELEMENTARY FUNCTIONS 
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We will here only give some examples of mappings induced by power 

functions and by the exponential function and their combinations with 

Mobius transforms. 

Suppose aR. That a branch of w=za is defined in an open set Q means 

that za=ea log z for an appropriately chosen branch of the logarithm. 

Note that those zQ for which \z\=r are mapped onto |w|=ra so that 

circular arcs centered at the origin are mapped onto (other circular arcs 

centered at the origin. Similarly, if z is on a ray arg z =θ we have arg 

w=aθ so rays from the origin are mapped onto other rays from the origin. 

Also, angles at the origin are multiplied by a factor a so that the map is 

certainly not conformal there unless a=1. This is true even if a is an 

integer so that za is well defined in the whole plane. Note that the 

derivative vanishes at 0 then. 

These observations show that a wedge domain, bounded by two rays 

from the origin making the angle f may be mapped onto a half plane by 

applying a branch of za where a=n/f. More generally, any region with a 

corner at the origin may have this corner 'straightened out' by applying an 

appropriate power function. Since any region bounded by two 

intersecting circular arcs may be mapped onto a wedge by a Mobius 

transform taking the points of intersection to 0 and to respectively,                                                 

any such region may be mapped onto a half plane by composing a 

Mobius transform and a power function. 

EXERCISE. Construct a conformal mapping that takes the region 

Modulus of jz+3 < v/10,  Modulus of jz - 2 < y/5,  onto the interior of the 

first quadrant. 

EXERCISE. Map the region 

0 < arg z < n/a , 0 < jzj < 1 ,  onto the interior of the unit circle (a > 1/2. 

Since ez=ex (cos y+i sin y if z=x+iy it is clear that the exponential 

function takes any line parallel to the real axis into a ray from the origin. 

Similarly, any vertical line segment is taken into a circular arc centered at 
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the origin and with angular opening equal to the length of the line 

segment. This means that an infinite strip parallel to the real axis, i.e., a 

region of the type a < Im z < b, is mapped onto a wedge domain by the 

exponential function. A half infinite strip defined by a < Im z < b, Re z < 

c is similarly mapped onto a circular sector centered at the origin. 

EXERCISE. What is the image of the region 0 < Im z < 2n under the 

map w=ez 

EXERCISE  Consider the conformal map given by cos z. What are the 

images of lines parallel to the real and imaginary axes What is the image 

of the strip →n < Re z < n 

 

BASIC ALGEBRAIC PROPERTIES 

Various properties of addition and multiplication of complex numbers 

are the same as for real numbers. We list here the more basic of these 

algebraic properties and verify some of them. Most of the others are 

verified in the exercises. The commutative laws 

Zi+Z2=Z2+Zi, ZiZ2=Z2Zi and the associative 

laws 

(Zi+Z2+Z3=Zi+(Z2+Z3, (ZiZ2Z3=Zi(Z2Z3 

follow easily from the definitions of addition and multiplication of 

complex numbers and the fact that real numbers obey these laws. For 

example, if 

Zi=(xi, yi and Z2=(x2, y2,  

then 

Zi+Z2=(xi+x2, yi+y2 =( x 2 +x i ,  y 2 +y i  =Z 2 +Z i .  

Verification of the rest of the above laws, as well as the distributive law 

Z(Zi+Z2=ZZi+ZZ2,  is similar. 

According to the commutative law for multiplication, i y =y i .  Hence 

one can write Z=x+yi instead of z=x+iy. Also, because of the associative 
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laws, a sum zi+Z2+Z3 or a product ziZ2Z3 is well defined without 

parentheses, as is the case with real numbers.  

The additive identity 0=(0, 0 and the multiplicative identity 1=(1, 0 

for real numbers carry over to the entire complex number system. That 

is,  

z +0=z  and z    1=z  

for every complex number z. Furthermore, 0 and 1 are the only complex 

numbers with such properties  

There is associated with each complex number z = ( x ,  y   an 

additive inverse 

-z=( - x ,  - y  ,   

satisfying the equation z + ( - z  = 0. Moreover, there is only one additive 

inverse for any given z, since the equation 

( x ,  y  + ( u ,  v  = (0, 0 

implies that u x  and v y .  

For any nonzero complex number z = ( x ,  y  ,  there is a number z
-1

 

such that zz
-1

=1. This multiplicative inverse is less obvious than the 

additive one. To find it, we seek real numbers u and v, expressed in 

terms of x and y, such that 

( x ,  y  ( u ,  v  = ( 1 ,  0. 

According to equation which defines the product of two complex num- 

bers, u and v must satisfy the pair 

x u  -  y v = 1 ,  y u + x v = 0 

of linear simultaneous equations; and simple computation yields the 

unique solution The inverse z
-1

 is not defined when z = 0. In fact, z = 0 

means that x
2
+y

2
=0; and this is not permitted in expression 
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FURTHER PROPERTIES 

 

In this section, we mention a number of other algebraic properties of 

addition and multiplication of complex numbers that follow from the 

ones already described multiplying out the products in the numerator and 

denominator on the right, and then using the property 

Inasmuch as such properties continue to be anticipated because they also 

apply to real numbers, the reader can easily pass to Sec. 4 without 

serious disruption. 

We begin with the observation that the existence of multiplicative 

inverses enables us to show that if a product Z1Z2 is zero, then so is at 

least one of the factors Z1 and Z2. For suppose that Z1Z2=0 and Z1=0. 

The inverse z
-1

 exists; and any complex number times zero is zero (Sec. 

1. Hence 

Z2=Z2   1=Z2(Z1Z-
1
=(Z-

1
Z1Z2=Z-

1
 (Z1Z2=Z-

1
   0=0. 

That is, if Z1Z2=0, either Z1=0 or Z2=0; or possibly both of the 

numbers Z1 and Z2 are zero. Another way to state this result is that if 

two complex numbers Z1 and  Z2 are nonzero, then so is their product 

Z1 Z2.  

 

Check your Progress - 1 

Discuss Analytic Functions Conformal Mappings  

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Analyticity   

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 
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2.5 LET US SUM UP 

In this unit we have discussed the definition and example of Analytic 

Functions, Conformal Mappings And Analyticity, Analyticity Of Power 

Series; Elementary Functions, Conformal Mappings By Elementary 

Functions 

 

2.6 KEYWORDS 

Analytic Functions, Conformal Mappings And Analyticity… A map f : 

Q → C, where Q is an open subset of C, is called conformal if it satisfies 

the following conditions: 

Analyticity Of Power Series Elementary Functions … We will first 

continue the study of power series begun in First of all, if a power series 

really behaves 'like a polynomial of infinite order 

Conformal Mappings By Elementary Functions.. We will here only give 

some examples of mappings induced by power functions and by the 

exponential function and their combinations with Mobius transforms. 

 

2.7 QUESTIONS FOR REVIEW 

Explain Analytic Functions Conformal Mappings  

Explain Analyticity 

 

2.8 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Analytic Functions Conformal Mappings  

     (answer for Check your Progress - 1 Q   
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Analyticity    (answer for Check your Progress - 1 Q   
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UNIT  -  III: INTEGRATION ….. 

COMPLEX INTEGRATION 

 

STRUCTURE 

 

3.0 Objectives 

3.1 Introduction 

3.2 Integration ….. Complex Integration 

3.3 Goursat's Theorem 

3.4 Local Properties of Analytic Functions 

3.5 A General Form of Cauchy's Integral Theorem 

3.6 Analyticity on The Riemann Sphere 

3.7 Let Us Sum Up   

3.8 Keywords   

3.9 Questions For Review   

3.10 Answers To Check Your Progress 

3.11 References  

3.0 OBJECTIVES 

 

After studying this unit,  you should be able to:                  

Learn,  Understand about Integration ….. Complex Integration 

Goursat's Theorem                                

Local Properties Of Analytic Functions                                                    

A General Form Of Cauchy's Integral Theorem                                                 

Analyticity On The Riemann Sphere 
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3.1 INTRODUCTION 

 

In this part of the course we will study some basic complex analysis. 

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematic 

In this section we will study complex functions of a complex variable, 

Integration ….. Complex Integration, Goursat's Theorem, Local 

Properties Of Analytic Functions, A General Form Of Cauchy's Integral 

Theorem, Analyticity On The Riemann Sphere 

 

3.2 INTEGRATION ….. COMPLEX 

INTEGRATION 

Complex integration is at the core of the deeper facts about analytic 

functions. Here we will discuss the basic definitions. 

Let y be a piecewise differentiable curve in C. This means a complex- 

valued, continuous function defined on a compact real interval which is 

continuously differentiable except at a finite number of points, where at 

least the left and right hand limits of the derivative exist. Thus it is 

described by an equation z=z(t where a < t < b for some real numbers a 

and b and z' is continuous except for a finite number of jump 

discontinuities. For convenience we will in the sequel call such a curve 

an arc. 

If f is a continuous, complex-valued function of a complex variable 

defined on an arc 7, then the composite function f (z(t is continuous and 

we make the following definition. 

Definition. J f (z dz=J f (z(tz'(t dt. 

If you know about line integrals and f=u+iv, z=x+iy you will realize that 

fY f (z dz is the line integral 

J udx → vdy+i J v dx+u dy,  
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but we will not use this. It is, however, very important that the complex 

integral is independent of the parametrization of the arc 7. This means 

the following. A change of parameter is given by a piece- wise 

differentiable, increasing function t(s mapping an interval [c, d] onto [a, 

b]. The usual change of variables formula then shows that fY f (z dz=j'd 

f (z(t(sz'(t(st'(s ds. Here z'(t(st'(s is, by the chain rule, the 

derivative of z(t(s, so that the definition of the com- plex integral gives 

the same value whether we parametrize 7 by z(t or z(t(s. 

Note that the arc 7 has an orientation, in that it begins at z(a and ends at 

z(b. If t(s is a decreasing piecewise differentiable function,  mapping [c, 

d] onto [a, b], then the equation z=z(t(s will give a parametrization of 

the opposite arc to 7, which we denote by →y, in                                             

that the initial point is now z(t(c=z(b and the final point z(t(d = z(a. 

Thus we have f (z dzv→ f (z dz. 

It is clear by the definition that the integral is linear in f, and also that if 

we divide an arc 7 into two sub-arcs 71 and 72 by splitting the parameter 

interval into two subintervals with no common interior points (keeping 

the correct orientation, then j' f (z dz=f f (z dz + f72 f (z dz. It is now 

an obvious step to consider the sum of two (or more arcs 71 and y2 even 

if they are not sub-arcs of another arc, and define the integral over such a 

sum as the sum of the integrals over the individual terms. Such a formal 

sum of arcs is called a chain. Given arcs j1}... , Yn we may integrate 

over chains of the form 7=a171+...+an7n,  where the coefficients a1}... , 

an are arbitrary integers, indicating that the integral jf enters in f with the 

coefficient aj. If aj=0 the arc Yj can of course be left out of 7. 

Note that our notation for the opposite of an arc makes sense, in that 

integrating over →7 amounts to integrating over (—17. Very often we 

will integrate over closed arcs. This means an arc where the initial and 

final points coincide. A simple arc is one without self-intersections; for a 

closed arc this means no self-intersections apart from the common initial 

and final point. 

There is also a triangle inequality for complex integrals. From the 

definition of integral and the triangle inequality it immediately follows 
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that where the last integral is defined by \f (z \ \dz\ := \f (z(t\\z'(t \ dt 

and is called an integral with respect to arc-length. The reason for this is, 

of course, that \dz\=\ z'(t\ dt gives the length of the arc 7. If you don't 

know this already, you may take it as a definition of length. Note that a 

very similar calculation to the one we did earlier shows that an integral 

with respect to arc length is independent of the parametrization, and in 

this case also of the orientation of the arc. 

EXAMPLE. Suppose 7 is the circle \z → a\=r, oriented by running 

through it counter-clockwise. A parametrization is z(t = a+re→t, 0 < t < 

2n. We obtain z'(t=ire→t so that \z'(t\=r. The length of the circle is 

therefore JQ2→ rdt=2nr, as expected. 

It is possible to integrate along more general curves than those that are 

piece-wise differentiable, so called rectifiable curves. There is seldom 

any reason to do this in complex analysis, however. In fact,  when 

integrating analytic functions the integral is, as we shall see later,  

independent of small changes in the path we integrate over, so it is 

practically always enough to consider piece-wise differentiable arcs. 

The elementary way of calculating integrals of a function of a real 

variable is by finding a primitive of the integrand. This method can be 

used also for complex integrals. Suppose that a continuous function f has 

a primitive, i.e., a function F analytic on a continuously differ- entiate 

curve y such that F'=f. Suppose z=z(t, a < t < b, is a parametrization of 

7. Then 

[F (T] a=F (zi → F (zo,  

where z0=z(a is the initial and z1=z(b the final point of 7. If 7 is just 

piece-wise continuously differentiate the same formula holds; one only 

has to use on each differentiate piece and add the resulting formulas. The 

evaluations of the primitive at the intermediate points will then cancel, 

and we obtain again. 

So far the theory of analytic functions closely parallels the theory of 

functions of a real variable. This is quite misleading, as we shall see in 

the next section. The first indication that the theory of analytic functions 
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is very different from one-variable real analysis comes when one asks the 

question of which functions f of a complex variable have a primitive. 

This turns out to require that f is analytic, but not even this is enough. 

There are also requirements on the nature of the domain of f, and these 

questions are a central theme for the theory of analytic functions. The 

starting point is the following theorem. 

THEOREM. Suppose f is continuous in a region Q. Then f has a 

primitive F in Q if and only if / f (z dz=0 for every closed arc 

Y C Q. It is enough if this is true for arcs made up solely of vertical and 

horizontal line segments. 

PROOF. If F is a primitive of f in Q and y a closed arc with initial and 

final points zi=z0, then f (z dz=F(zi → F(z0=0 since zi=zo. 

Conversely, if the integrfal along closed arcs vanishes, pick a point 

z0Q and define F(z=J'Y f, where y is an arc in Q starting at z0 and 

ending at z. This gives an unambiguous definition of F, since if Y is 

another such arc, then the arc y → Y is a closed arc in Q. Thus the 

integral along y has the same value as the integral along Y. We may 

restrict ourselves to arcs of the special type of the statement of the 

theorem, since in an open, connected set Q every pair of points may be 

connected by an arc of this kind in Q (show this as an exercise!. 

It now remains to show that F is a primitive of f in Q. 

Writing z=x+iy with real x, y we shall calculate the partial derivatives of 

F with respect to x and y. To do this, let hR be so small that the line 

segment between z and z+h is contained in Q. Then F(z+h → F(z=J0 f 

(z +t dt. This is seen by choosing an arc y starting at zo and ending at z 

to calculate F (z, and then calculating F(z+h by adding to y the line 

segment connecting z to z+h, which we parametrize by z(t=z+t, 0 < t < 

h. 

By the fundamental theorem of calculus, differentiating with respect to h 

gives X(z=f(z. Similarly, considering F(z+ih → F(z = i Jo f (z+it dt 
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we obtain Fy(z=if (z. Thus the Cauchy-Riemann equation F'x+iFy=0 is 

satisfied, and F'=F'x=f, so that F is a primitive of f.   

3.3 GOURSAT'S THEOREM 

In this section we shall begin to explore properties of analytic func- tions 

which show them to be very different in nature to differentiable functions 

of a real variable. 

We first prove a fundamental theorem by Goursat (1905. We then 

consider integrals along the boundary of a rectangle. A rectangle is of 

course a set defined by inequalities a < Re z < b, c < Im z < d, and the 

boundary consists of four line segments with endpoints at the points a+ic, 

b+ic, b+id and a+id. The boundary is therefore a closed arc,  and we 

orient it by running through the vertices in the order described,  ending 

up finally with a+ic again. This means we run through the boundary in 

the direction which has the interior of the rectangle to the left of the 

boundary. This orientation of the boundary is called positive. 

THEOREM. Suppose f is analytic in a closed rectangle (i.e., in an open 

set containing the rectangle and let y be the positively oriented 

boundary of me rectangle. Then j f (.=C. 

7 

PROOF. Let R be the rectangle and I be the value of the integral. Now 

divide R into four congruent rectangles by one horizontal and one 

vertical cut, and let the integrals over the positively oriented boundaries 

of the sub-rectangles be Ij, j=1, , 4. A common side to two of the 

rectangles will then be given opposite orientation in the corresponding 

integrals. It follows that I=12+12+13+14, since the contributions from 

integrating over the cuts will cancel. Thus the absolute value of at least 

one of the Ij will be > \I|/4. Let R1 be a corresponding sub-rectangle and 

I1 the associated integral, so that \I\ < 4\I1\. We can now repeat the 

process with R1, and then repeat this process in- definitely. We obtain a 
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nested1 sequence R1, R2, ... of rectangles anda corresponding sequence 

I\, I2, ... of integrals such that \I\ < 4n\In\ for n=1, 2, ..... 

The sequences of lower left corner real and imaginary parts in Rn are 

both increasing, because the rectangles are nested, and bounded from 

above, because all rectangles are contained in R. It follows that the 

sequence of lower left corners converge to a point wR. Let d be the 

diameter of R, i.e., the length of the diagonal. Then it is clear that the 

diameter of Rn is dn=2-nd, so that given any neighborhood of w,  Rn will 

be contained in this neighborhood for all sufficiently large n. 

Now f is differentiable at w, so that \f→ f '(w\ <if z 

is sufficiently close to w. Denoting the expression inside the absolute 

value signs by p(z we obtain f (z=f (w+f '(w(z → w+ p(z(z → w,  

where \p(z \ <if z is in a sufficiently small neighborhood of w. 

Choose n so large that Rn is contained in such a neighborhood, and let pn 

be the positively oriented boundary of Rn  

Now, the constant f (w has primitive f (wz and the first order poly- 

nomial f'(w(z → w has primitive 2f'(w(z → w2, so that the first two 

integrals in the second line vanish. The third integral is estimated as 

follows: 

J p(z(z → w dz < j \z → w\\dz\ < dnLn,  Yn 

where Ln is the length of Yn and dn as before is the diameter of Rn. The 

estimate follows by the triangle inequality and since \z → w\ < dn,  both 

of z and w being in Rn. However, we have dn=2-nd, and it is equally 

clear that Ln=2-nL, where L is the length of the boundary of R. Thus we 

have \I\ < 4n\In\ < dL£. Since> 0 is arbitrary, it follows that I=0.  

We will also need a slight extension of Goursat's theorem. 

COROLLARY. Suppose f is analytic in a closed rectangle R ex- cept for 

at an interior point p, where (z → pf(z → 0 as z → p. If y 

is the positively oriented boundary of R, then / f (z dz=0. 
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PROOF. Let> 0 and R0 C R be a square centered at p and so small 

that \(z → pf (z\ <for zR0. If 7o is the positively oriented 

boundary of R0 we obtain 

J f (z dz <J Z→P < 8  Yo 

The last inequality is due to the facts that|z → p| > i/2 if i is the side 

length of Ro, and that the length of y0 is 4i. 

Now extend the sides of R0 until they cut R intoθ rectangles, one of 

which is R0. The other 8 satisfy the assumptions of Theorem It follows 

that|fY f I=I f f I < 8£, and since> 0 is arbitrary the integral over 7 

must be 0.  

We can now prove a first version of a fundamental theorem known as the 

Cauchy integral theorem. 

COROLLARY. (Cauchy's integral theorem for a disk. Suppose f is 

analytic in an open disk D, except possibly at a point p where (z → pf 

(z → 0 as z → p. Then f has a primitive in D \ {p}, and for 

every closed curve 7 in D \ {p} we then have j f (z dz=0 . 

PROOF. In view of Theorem it is enough to show that f has a primitive 

in D \ {p}. 

Let z0 be a fixed point in D with both Re z0=Re p and Im z0 = Imp. We 

may also assume that the center of D has both real and imaginary parts 

closer to those of p than to those of z0. Let z=p be another point in D. 

Suppose first that the boundary of the rectangle with opposite cor- ners at 

z0 and z is in D and does not contain p. We then define F (z as the 

integral of f along first the horizontal side of the rectangle starting at z0, 

and then the vertical side ending at z. It is clear, reasoning as in the proof 

of Theorem that Fy(z=if (z. However  F(z will have                                 

the same value if we first integrate along the vertical side starting at z0                      

and then along the horizontal side ending at z, and with this definition                              

we see that Ff (z=f (z, so that F is a primitive of f wherever it is 

defined. 
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It remains to define F at points for which p is on the boundary of the 

rectangle, or one of the corners of the rectangle is outside D. Then first 

note that we could have started our path of integration by first moving 

vertically, then horizontally and finally vertically again until we reach z, 

and the horizontal path may be chosen anywhere between Im z and Im 

z0, as long as the path stays in D and doesn't contain p. This change will 

not affect the value of F. 

Suppose now that either p is on the horizontal side ending at z,  or else 

that the other endpoint of this side is outside D. We then define F(z just 

as before and obtain Fy(z=if(z. However, when calculating Ff we 

modify our path by first following the horizontal side starting at z0 some 

distance, then following a vertical path until we reach the horizontal side 

ending at z, and then following this side until we reach z. This can be 

done so that the path is inside D and does not contain p. The value of the 

integral will again equal F(z because of Corollary, and we get just as 

before that FX(z=f (z. 

It is clear that a similar construction will work if p is on the vertical side 

ending at z, or if this side is not in D. Thus F is a well defined analytic 

function in D \ {p} with derivative f. You should draw a picture of the 

various cases and convince yourself that the construction will give an 

unambiguous definition of F!  

The conclusion of Corollary can not be drawn with weaker assumptions 

on f at the point p. To illustrate this, let f (z=1/(z → p which is analytic 

in any disk centered at p, except at z=p, and let 7 be the positively 

oriented boundary of such a circle. We may parametrize Y by z(t=p+ret, 

0 < t < 2n. Then z'(t=irezt so that 

This example is actually more crucial than is immediately obvious, and 

we use it as the basis for the notion of index or winding number of a 

point with respect to a closed arc. 

Definition A cycle is a chain (a formal sum of arcs which may be 

written as a sum of finitely many closed arcs. 

The index of a point p / Y with respect to a cycle y is n 
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Note that the range of Y is a compact set, being finite union of con- 

tinuous images of the compact parameter intervals, so its complement is 

open. An open set may be split into open, connected components3. 

Clearly there is precisely one unbounded component in the complement 

of Y. 

Lemma. The index has the following properties. 

n(Y, p is always an integer. 

n(—Y, p=—n(Y, p. 

n(Yi+Y2, p=n(Yi, p+n(Y2, p if Yi and y2 are both cycles not 

containing p. 

n(Y, p is constant as a function of p in any connected compo- 

nent of the complement of the range of y.n(Y, p=0 for all p in the 

unbounded component of the complement of the range of y. 

PROOF. Let z=z(t, a < t < b, be a parametrization of a closed arc y and 

set g(t=fa for t[a, b]. Then g(b=2nin(y, p and 

g'(t=z'(t/(z(t → p so that the derivative of h(t=e-g(t\z(t → p is 

identically 0. We have h(a=z(a → p, so h is constant equal to z(a → p. 

For t=b we obtain e-g(b(z(b → p=z(a → p. Since y is a closed arc we 

have z(b=z(a=p so that e-g(b=1. Thus g(b is an integer multiple of 2ni. 

Since a finite sum of integers is an integer are obvious from the 

definition, and it is also obvious that n(Y, p depends continuously on 

pY (give detailed reasons yourself!. But a continuous, real-valued 

function in a region assumes intermediate values, so since the index is 

integer-valued follows. 

Finally, it is clear that n(Y, p → 0 as p → to, and since n(Y, p is 

independent of p for p in the unbounded component of the complement 

of y follows.   
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A circle has a complement consisting of exactly two components,  and 

since we saw in that the index of the center of a positively oriented circle 

is 1, all other points in the open disk will also have index 1 with respect 

to the boundary circle. 

THEOREM. (Cauchy's integral formula. Suppose f is analytic in an 

open set D for which the conclusion of Corollary 3.6 is correct,  and that 

y is a cycle in D. Then, if pY,  

f → 1 f f (z dz 

n(Y, pf (p→2ni J z → p Y 

In particular, this is true if D is a disk. 

PROOF. Put g(z=f (zZ—fp. Thenis analytic in D \ [rp] and (z → 

pg(z=f (z → f (p → 0 as z → p since f is continuous at p. Thus fY 

g(z dz=0 by Corollary 3.6. But by the definition ofthis 

means that f dz=f (p f . The theorem follows.  

jy z-p J Mr J Jy z-p 

For the special case when y is a positively oriented circle we obtain f 

(p=2ni IY z→p dz when p is inside the circle. When p is outside the 

circle, the integral equals 0. The situation for analytic functions is 

therefore radically different than for differentiable functions of a real 

variable, since Cauchy's integral formula shows that if you know the 

values of an analytic function on a circle, then all the values inside the 

circle are determined. We shall see many more instances of how the 

behavior of an analytic function in one place determines the behavior in 

other locations. Note that so far we only know the conclusion of the                        

theorem in the case when D is a disk. 

 

3.4 LOCAL PROPERTIES OF ANALYTIC 

FUNCTIONS 

 



Notes 

61 

We start with a useful result about analytic dependence on a pa- rameter 

in certain integrals. 

LEMMA. Suppose f is continuous on a circle 7 with equation \z → p\=r. 

Then the function 

(X3 9(z=2A / Z→zdz 

is analytic in the corresponding open disk \z → p\ < r. In fact, we may 

expand the function in a power series g(z=<k=0 ak(z → pk with radius 

of convergence at least equal to r. The coefficients in the series are given 

by ak=2- →l+i dz. 

PROOF. The denominator in the integral is ( → z=(( → p(1 → . The 

reciprocal of this is the sum of a convergent geometric series since \ fr-p \ 

< 1, z being closer to p than (. A partial sum of this series has the sum 

n-1 . . _ p. k 1 _ (-n 

\-l( z → PY-tr \-l1 → (i=P (z - p 

( → z (( → Pn (( → z' 

Solving for 1/(Z → z and inserting in (3.3 we obtain 

g(~= V a(z Vk I (z → Pn I f (Z dZ 

g(z=h (z→p J a→pn(z→z • 

where ak are given in the statement of the theorem. We can estimate the 

absolute value of the last term by 

n 1 r \f(z\z → p 

J \z → z\ 

which obviously tends to 0 as n → 0 since \z → p\ < r. The lemma 

follows.  

Essentially all results about the local behavior of analytic functions,  i.e., 

properties valid in a neighborhood of a point of analyticity, can be 

deduced from the following theorem, which is an easy consequence  
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THEOREM. Suppose f is analytic in a disk \z → p\ < R. Then f has 

derivatives of all orders and one may expand f in a power series f (z=r=o 

ak(z → Pk, with radius of convergence at least equal to R. We have 

ak=f (k(p/k!=fY (z-Pk+i dz, where y is any positively oriented circle 

centered at p such that f is analytic in the corresponding closed disk. 

PROOF. Let 7 be the circle \z → p\=r, 0 < r < R. If z is inside the circle 

Cauchy's integral formula gives 

f (z  =/ a -c. 

We may now apply Lemma. We may choose r as close to R as we wish, 

so the radius of convergence is at least R. Since any power series may be 

differentiated term by term as many times as we wish,  the 

differentiability follows. This also shows that f (k(p=k!ak.  

If the largest open disk centered at p in which there is an analytic 

function that agrees with f near p has radius R (< to, then the radius of 

convergence of the power series is > R. But we can not have strict 

inequality here, since f then has an analytic extension to a larger disk. We 

conclude that the circle of convergence has at least one singularity of f on 

its boundary. In particular, if f is entire, it may be expanded in a power 

series around any pC, and the radius of convergence will always be 

infinite. 

Another observation is that if all derivatives of a function analytic in a 

disk vanishes at the center of the disk, then the function is identically 

zero in the disk, since all coefficients in the power series vanish. We can 

generalize this. 

THEOREM. Suppose f is analytic in a region Q and that all derivatives 

of f vanish at a point pQ. Then f vanishes identically. 

PROOF. The set of points where all derivatives vanish is, as we just saw, 

open. But so is the set of points where at least one derivative does not 

vanish, since all derivatives are continuous. Thus Q is the union of two 
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disjoint open sets, one of which therefore has to be empty4. The theorem 

follows.  

The power series is called the Taylor series for f at p and the formula f 

(z=k=0 ak (z → pk+^/ ,  

obtained from Lemma is known as Taylor's formula with n terms and 

remainder. 

Theorem. gives integral formulas for the derivatives of an ana- lytic 

function at the center of a disk. This may be generalized. 

COROLLARY. Suppose f is analytic in a region Q for which Cauchy's 

theorem is valid, and that pQ. Then the derivatives of f at p are given 

by 

f""<">=I (c-f+T A. Y 

where y is any cycle in Q \ {p} and such that n(p, p=1. 

In particular that is true for any positively oriented circle y containing p 

and such that f is analytic in the corresponding closed disk. 

PROOF. Suppose f (z=ff=0 ak(z → pk near p. The function g(z=(f (z 

→ Yml→o ak(z → pk/(z → pn is analytic in Q, since this is obvious 

away from p, and near p it follows from the power series expansion, 

which also shows that g(p=an=f (n(p/n!. 

Now (z → pk-n-T has a primitive (z → pk-n/(k → n in Q \ {p} for k < 

n so applying Cauchy's integral formula to g, all the terms from the sum 

contribute 0 to the integral. The corollary follows.  

We are also able to give a kind of converse to the Cauchy integral 

theorem which is sometimes useful. 

THEOREM (Morera. Suppose f is continuous in a region Q and fY f (z 

dz=0 for all cycles in Q. Then f is analytic in Q. It is actually enough if 

each point of Q has a neighborhood such that the condition is satisfied 

when y is the boundary of any rectangle contained in the neighborhood. 
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PROOF. The assumption shows that f has a primitive in a neigh- 

borhood of every point of Q, according to Theorem or with the less 

restrictive assumptions, according to the proof of the Cauchy integral 

theorem. Thus f is near each point the derivative of an analytic function, 

so it is itself differentiable in Q, i.e., analytic.  

COROLLARY. Zeros of an analytic function not identically 0 are 

isolated points in the domain of analyticity. 

PROOF. Suppose f is analytic at p and f (p=0. According to Theorem 

we may expand f in power series fi=0 ak(z → pk. Since f (p=0 the first 

term in the series vanishes, and if n is the first index for which an=0 we 

obtain f (z=(z → png(z, whereis the analytic function £=0 an+k(z 

→ pk, so that g(p=an=0. The positive integer n is called to order or 

multiplicity of the zero p. 

Sinceis continuous and g(p=0 there is a neighborhood of p in 

whichdoesn't vanish. Since (z → pn only vanishes for z=p it follows 

that there is a neighborhood of p in which p is the only zero of f.  

Note that the fact that the zeros do not accumulate anywhere in the 

domain of analyticity does not prevent them from accumulating at some 

point of the boundary of the domain. An example is sin(1/z,  which is 

analytic in z=0 and has zeros 1 /(kn, k=±1, ±2, ..., which accumulate at 

0. 

A fundamental theorem for entire functions is named after Liouville. 

THEOREM. (Liouville. Suppose f is an entire function such that \f (z| < 

C\z\n for all sufficiently large \z\. Then f is a polynomial of degree < n. 

In particular, if f is bounded in all of C, then f is constant. 

PROOF. Suppose y is a circle centered at 0 of radius r, and con- sider for 

p=0. If M(r=sup|^|=r \f (z\ we obtain \f(k(0\ < k\r-k M (r, k=0, 1, 2, 

.... These estimates are called Cauchy's es- timates. Our assumption is 

that M(r < Crn for large r, so that \f (k(0\ < k\Crn-k if r is large 

enough. As r → to we obtain f (k(0 = 0 for k > n, so that the Taylor 

expansion of f is a polynomial of degree < n.  
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The fact that the only bounded, entire functions are constants is often 

very useful. We can for example now give a very simple proof of the 

fundamental theorem of algebra. 

THEOREM. (Fundamental theorem of algebra. Any non-constant 

polynomial has at least one zero. 

PROOF. Suppose P is a polynomial without zeros. Then 1/P(z is an 

entire function, and we shall see that it is bounded, so that Liou- ville's 

theorem will show it to be constant. 

If P(z=anzn+an-1zn-1+...+a0 with an=0 we may write P(z=zn(an+an-

1/z+...+a0/zn. Here the expression in brackets tends to an as z → to. 

Since zn → oo if n> 0 we have 1/P bounded for large \ z\ . Thus P is 

constant. The theorem follows.  

 

3.5 A GENERAL FORM OF CAUCHY'S 

INTEGRAL THEOREM 

 

The aim of this section is to prove a version of Corollary valid in more 

general regions than disks. Note that as soon as we do this we also have a 

more general version of Cauchy's integral formula, Theorem  We remind 

the reader that a chain is a formal sum of arcs, which can be integrated 

over by integrating over each term separately, and adding the results. 

Similarly, a chain which may be written as a sum where all terms are 

closed arcs is called a cycle. 

We also remind the reader about the notion of a simply connected set, 

according to Definition This property is closely connected with the 

notion of index. 

THEOREM. A region Q is simply connected if and only if n(7, p=0 for 

all cycles 7 C Q and all points p Q. 
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PROOF. Suppose the complement of Q (with respect to the ex- tended 

plane is connected. Then the complement is contained in the unbounded 

region determined by 7, so Lemma shows that 

n(7, p=0 if p Q 

Conversely, if CQ is not connected, we can write it as the disjoint union 

of two closed sets5, one of which contains to, and the other therefore 

being bounded. If the bounded set is K, it is compact and will therefore 

have a smallest distance d > 0 to the other part of the complement. It is 

left to the reader to prove this. 

Let p K and cover the whole plane by a net of closed squares with side 

d/2, such that p is the center of one of the squares. Clearly only finitely 

many of the squares have at least one point in common with K,  since K 

is bounded. Let these squares have positively oriented bound- aries 7l, ... 

, pn and consider the cycle 7=Yj. Clearly n(p, p=1 since p is in exactly 

one of the squares. It is also clear that 7 C Q U K,  since the diameters of 

the squares are < d and they contain points from K. Now, certain sides of 

the squares occur twice in 7, being common to two adjacent squares. Any 

side that has a point in common with K is of this type, and the 

contributions from these sides in an integral cancel, since they are run 

through in opposite directions. Removing these sides will therefore not 

change 7, and then 7 C Q. It follows that if Q is not simply connected, 

then indices for points outside Q with respect to cycles in Q are not 

always 0.  

We shall use this characterization of simply connected regions to prove 

the following general version of Cauchy's theorem. 

THEOREM. (Cauchy's integral theorem. If f is analytic in a simply 

connected region Q, then j' f (z dz=0 for any cycle 7 C Q. 

PROOF. We will show that the assumptions imply that f has a primitive 

in Q. This follows if we can show that the integral of f along a cycle 7 in 

Q consisting only of vertical and horizontal line segments always 
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vanishes, since then the integral from a fixed point zo to z along a path of 

this type is independent of the particular path, so that we obtain a well 

defined primitive in the usual way. 

If 7 is such a cycle, extend all line segments in 7 indefinitely. We obtain 

a rectangular net consisting of some rectangles with positively oriented 

boundaries 7l, ... , 7n, and some unbounded regions.  

We may assume n > 0, and pick a point pj in the interior of each 

rectangle. We shall first show that y is the cycle Y=n(p, pjYj. It is clear 

by construction that n(p → Y, Pj=0 and also that n(p → Y, P = 0 for 

every point p in one of the unbounded regions determined by the net, 

since these points are obviously all in the unbounded regions determined 

by 7 respectively Y. 

We shall show that no side of any rectangle is in 7 → Y. Suppose to the 

contrary that a side a of the rectangle bounded by Yj is contained in Y → 

y' with coefficient a=0. There are at least one region determined by the 

net in addition to the rectangle Yj which have some part of a on its 

boundary. Let p be a point in in such a region. Now a is not contained in 

y → Y → aYj, so that the indices of p and pj are the same with respect to 

this cycle. But by construction the indices are actually 0 and →a, 

respectively, so that a=0, and y → Y is the empty cycle. 

Next we prove that all Yj for which n(Yj , pj=0 bound rectangles 

contained in Q. For suppose p is in the closed rectangle, but not in Q. 

Then n(Y, p=0, since Q is simply connected. On the other hand,  the line 

segment connecting p and pj does not intersect Y, so p and pj are in the 

same component of the complement of Y, and therefore have the same 

index with respect to y. It follows that n(Y, pj=0 unless the rectangle 

bounded by Yj is contained in Q.  

We end this section with a very important consequence of the pre- vious 

theorem. 

COROLLARY.  Suppose f is analytic and has no zeros in a simply 

connected region Q. Then one may define a branch of log(f (z in Q. 
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PROOF. Since f has no zeros in Q the function f'(z/f (z is analytic in                                          

Q so that Cauchy's integral theorem applies to it. According to Theorem 

there is therefore a primitiveof this function defined in Q, and 

dZ(f(ze-g(z=f'(ze-9(z → f(ze-g(z=0, so that 

f (ze-g(z)=C, where C=0 since neither f nor the exponential func- tion 

vanishes. Thus we may find AC so that eA=C. It follows that f 

(z=eg(z+A, so that g(z+A is a branch of log(f (z.  

Since one may define a branch of the logarithm one may also define 

branches of any   power function in Q. We shall use this in proving the 

Riemann mapping theorem. 

REMARK. To obtain a version of Cauchy's theorem valid in arbitrary 

regions we would have to discuss homology of cycles, and we will 

abstain from this. We sometimes have to deal with regions which are not 

simply connected, but the cycles we integrate over are then                                           

always very simple and explicitly given and therefore never cause any 

problem. 

For example, suppose f is analytic in a circular ring Q defined by 0 < r0 

< \z → a\ < R0 < o and suppose r0 < r < R < R0 and let 7 be the cycle 

consisting of the two circles \z→a\=r and \z→a\=R, the first negatively 

and the second positively oriented. Then f (z dz=0, and 

we also have Cauchy's formula f (w=2→ f7 for any w satisfying r < \w 

→ a\ < R. 

To see this, let a1 be the vertical ray going upwards from a and a2 the 

opposite ray. Then Q \ a1 is simply connected. Let 71 be a positively 

oriented cycle obtained by taking the part of 7 in the set Im z < Im a and 

connecting the pieces by radial line segments.   

shows that f f=0. 

Similarly, the region Q \ o2 is simply connected, and if 72 is the part of 7 

in Im z > Im a, made into a positively oriented cycle by adding radial line 

segments, we also have J f=0. But 7=71+y2,  since the radial line 

segments will be run through twice and in opposite directions. 
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It is also easy to see that if Im w > Im a, then n(71, w=0 and n(72, w=1 

so that n(7, w=1. The reader should modify the construction for other 

locations of w to see that n(7, w=1 as soon as r < \w → a\ < R. 

3.6 ANALYTICITY ON THE RIEMANN 

SPHERE 

 

Viewing analytic functions as defined on the Riemann sphere, where all 

points including o look the same, one should be able to define analyticity 

at infinity. This leads to the following definition. 

DEFINITION. Suppose f is analytic in a neighborhood \z\ > r > 0 of o 

Then we say that f is analytic at o if z → f (1/z, which is analytic in 0 < 

\z\ < 1/r, extends to a function analytic also at 0. 

Similarly, if f is analytic in a neighborhood of a and f (z → o as z → a it 

would be tempting to say that f is analytic at a if 1/f (z extends to a 

function analytic at a. We will not use this terminology since it may lead 

to confusion, but it is a perfectly reasonable point of view. In fact, in the 

next section we will show that if f (z → o as z → a, then 1/f (z always 

has an analytic extension to a. 

Any Mobius transform is in this sense analytic everywhere on the 

Riemann sphere, and the reader should should carry out the simple 

verification, and also show that the same is true for any rational function. 

 

Check your Progress – 1  

Discuss Integration 

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Complex Integration 

_______________________________________________________ 
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________________________________________________________ 

________________________________________________________ 

3.7 LET US SUM UP 

In this unit we have discussed the definition and example of Integration 

Complex Integration, Goursat's Theorem, Local Properties of Analytic 

Functions, A General Form of Cauchy's Integral Theorem, Analyticity on 

The Riemann Sphere 

3.8 KEYWORDS 

Integration ….. Complex Integration… Complex integration is at the 

core of the deeper facts about analytic functions. Here we will discuss the 

basic definitions. 

Goursat's Theorem… In this section we shall begin to explore properties 

of analytic functions which show them to be very different in nature to 

differentiable functions of a real variable. 

Local Properties Of Analytic Functions… We start with a useful result 

about analytic dependence on a parameter in certain integrals. 

A General Form Of Cauchy's Integral Theorem.. The aim of this section 

is to prove a version of Corollary valid in more general regions than 

disks. 

Analyticity On The Riemann Sphere.. Viewing analytic functions as 

defined on the Riemann sphere, where all points including o look the 

same, one should be able to define analyticity at infinity. This leads to 

the following definition. 

3.9 QUESTIONS FOR REVIEW 

Explain Integration 

Explain Complex Integration 
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3.10 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Integration   (answer for Check your Progress - 1 Q ) 

Complex Integration  (answer for Check your Progress - 1 Q   

 

3.11 REFERENCES 

Complex Analysis, Basic of Complex Analysis, Complex Functions & 

Variables, Complex Variables, Introduction to Complex Analysis, 

Application Of Complex Analysis & Variables, Complex Functions, 

Complex Numbers & Analysis, The Complex Number System 
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UNIT  -  IV: LAURENT EXPANSIONS 

AND THE RESIDUE THEOREM 

 

STRUCTURE 

4.0 Objectives 

4.1 Introduction  

4.2 Laurent Expansions And The Residue Theorem 

4.3 Residue Calculus 

4.4 The Argument Principle 

4.5 Let Us Sum Up   

4.6 Keywords   

4.7 Questions For Review   

4.8 Answers To Check Your Progress 

4.9 References  

4.0 OBJECTIVES 

 

After studying this unit,  you should be able to: 

Learn,  Understand about Laurent Expansions And The Residue 

Theorem,  Residue Calculus The Argument Principle 

4.1 INTRODUCTION 

In this part of the course we will study some basic complex analysis. 

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematic 

In this section we will study complex functions of a complex variable, 

Laurent Expansions And The Residue Theorem, Residue Calculus, The 

Argument Principle 
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4.2 LAURENT EXPANSIONS AND 

RESIDUE THEOREM 

In this section we will give an expansion generalizing the power series 

expansion of an analytic function. In particular we will see that a 

function has a singular part at any isolated singularity, analogous to what 

we discussed in the previous section, but now possibly consisting of 

infinitely many terms. We will then use this expansion to prove the 

residue theorem, which gives a particularly simple way to calculate many 

complex integrals. We will finally apply this to several types of real 

integrals that are difficult or impossible to calculate by elementary 

means. 

Consider a function f which is analytic in a region containing the ring 0 < 

R0 < \z → a\ < Ri < to. The case R0=0 corresponds to the case when we 

have an isolated singularity at a. If R0 < r < R < Ri,  then it follows from 

Remark that the Cauchy integral formula holds in the form 

f (z=— f dZ → → f y→ dZ 2 ni J Z → z 2ni J Z → z 

IC_ a\=R |C→a\=r 

for any z satisfying r < \ z → a\ < R. If we set 

fi (z=n I B «• f2(z=- hi B d→ 

K-a\=R K-a\=r 

then f (z=fi(z+f2(z for such values of z. However, by Lemma fi is 

analytic in \z → a\ < R. It follows that f2 is analytic in r < \z → a\ < R. 

Actually, f2 is analytic in \z → a\ > r, even at to,  which is seen similarly 

to the proof of Lemma. In fact, setting z=a+1/w we may write the 

denominator in f1 as  

( → z=Z-a-1/w = → (1 → (Z → aw/w, and since \(z → aw\ < 1 the 

reciprocal of this is the sum of a convergent geometric series, and 

reasoning just as in the proof of Lemma 3.10 we obtain 

rc wk+1 r 
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f2(a+1/w=— → f (Z(Z → ak dZj 

k=0 |C-a|=r 

a power series in w which converges for \w\ < 1/r, corresponding to \z → 

a\ > r. It follows that f2 is analytic in \z → a\ > r, including z=to. Setting 

a=_L t f(Z 

k 2ni J (Z → ak+1 

|C-«|=r 

also for k1, →2, ... we can write this as f2(z=Y!-=-oo ak(z → ak. 

Adding up we obtain the following theorem. 

THEOREM (Laurent expansion. Suppose f is analytic in 0 < R0 < \z → 

a\ < R1 < oo. Then f has a Laurent expansion around a of the form 

f (z=ak(z → ak 'k=-rc 

converging at least for R0 < \z → a\ < R1, where the coefficients ak are 

given 

The singular part of f at a is Y!-=-oo ak(z → ak and is analytic for \z → 

a\ > R0, including at to. In particular, if a is an isolated sin- gularity for f, 

the singular part expansion converges everywhere except at z=a. The 

difference of f and its singular part is analytic wherever f is and also for 

\z → a\ < R1. 

Note that wherever the series converges the function f (z → Z→a = 

YZk=-1 ak(z → ak is the derivative of the function YZk=-1 k+1 (z → 

ak+1,  so that its integral along any closed curve in the domain of 

convergence is 0. It follows that the integral of f around a positively 

oriented circle Y in R0 < \z → a\ < R1 is equal to 2nia-1. The coefficient 

a-1 in the Laurent expansion of f around a is called the residue of f at a, 

since it determines what remains after integration around a closed curve. 

We will denote the residue of f at an isolated singularity a by Res f (a. 

This is of course 0 unless a actually is a singularity of f. A slight 

generalization of the above gives the following important theorem. 
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THEOREM (Residue theorem. Suppose Q is a simply connected region, 

and that f is analytic in Q except for a finite number of isolated 

singularities. Then, if y is a cycle in Q not passing through any of the 

singularities,  

I f (z dz=2nin(7, z Res f (z.  

PROOF. Subtract from f the singular parts for all singularities. This 

leaves a function analytic in Q, so that its integral is zero. As we saw 

above, the singular parts are analytic outside the correspond- ing 

singularity, and removing the term with index →1 the rest of the singular 

part has a primitive defined outside the singularity, so that their integrals 

vanish. It remains only to integrate the terms of index →1 for each 

singularity, which gives the result by the definition of the index.  

In all our applications of the residue theorem we will choose the cycle 7 

so that the indices of all the singularities with respect to 7 are either 1 or 

0. 

A formula for the residue at an isolated singularity is of course given for 

k1. Actually, this formula is not of much practical value; on the contrary, 

one tries to find the residues without integration and then uses this to 

evaluate integrals. It is clear, however, that for this to be possible we 

need methods not involving integration to find residues. No such 

generally applicable method is known in the case of an essential 

singularity, even though there are of course many cases when we will 

know the Laurent expansion, as we saw in the case of e}/z. The situation 

is different in the case of a pole, and we have the following theorem. 

THEOREM. Suppose that f has a pole of order n at a. Then Res f 

(a=limz→ajjZn-I((z → anf (z. In particular, for a simple pole the 

residue is limz→a(z → af (z. If f=p/q where p and q are analytic at a, 

p(a=0 and q has a simple zero at a, then the residue at a is p(a/q'(a. 

Similarly, if q has a double zero at a the residue is 

6p' (aq"(a → 2p(aq"'(a( .  3(q"(a2 ' 

Similar, even more complicated, formulas hold for higher order poles. 
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PROOF. According to assumption f (z = n ak(z → ak for z 

close to a, so g(z=(z → anf (z has a removable singularity at a and a-1 

is the coefficient of (z → an-1 in the corresponding power series 

expansion. But this coefficient is g(a-1l(a/(n → 1! and since g(n~11 is 

continuous at a the first claim follows. If now q has a simple zero at a, 

then (z → ap(z/q(z=p(z q{zflaq{a → p(a/q'(a  

since q(a→q'(a=0.  

Finally, if q has a double zero at a, then q(z=(z → a2q2(z where 

q2(a=q''(a/2 and q'2(a=q'''(a/6,  

as is easily verified.  

Hence      ((z - a2f (z'=(p{z/q2{z'=(p'(zq2(z →p(zq'2(z(q2(z 2.  

Letting z → a follows, and the final claim is left to the reader to verify.

  

The conclusion of all this is that simple poles cause little problem in 

determining the residue, whereas higher order poles are considerably 

more messy to deal with. In the next section we shall see how one may 

use the residue theorem to calculate certain real integrals. 

4.3 RESIDUE CALCULUS 

In this section we shall see how one may use the residue theorem to 

calculate certain real integrals. We will only discuss a few types of 

integrals that can be handled; many others exist. 

Let us first consider an integral of the form JQ2→ p(cosθ, sinθ d9. Here 

p(x, y is a rational function of two variables with no poles for (x, y on 

the unit circle. If we think of this integral as the result of calcu- lating an 

integral around the unit circle by the parametrization z=e%d,  0 <θ < 2n, 

we note that by Euler's formulas we have cosθ=1 (z+1/z and sinθ=1(z-

1/z. Furthermore, dz=ie%d d9 so that d9→i dz/z. The integral therefore 

equals →i f|z=1 p(Z+2/z, Z-2/z dz/z. The inte- grand is rational and it 

ting z=e%d as above, the integral equals — i Jjz, =1 (a+1 (z +1/z 1 dz/z 



Notes 

77 

only remains to find those poles that are inside the unit circle and 

evaluate their residues. 

ExAMPLE Consider the integral f2 a+Cosd where a>1. Set g z=e→d as 

above, the integral e which after simplification becomes 

-2i r dz 

z2+2az+1 |z|=1 

The zeros of the denominator are z→a ± Va→ 1. Since their product is 1, 

precisely one root is inside the unit circle; a being > 1 this root is \Ja2 → 

1 → a. Since the pole comes from a simple zero in the denominator, we 

can use the method of Theorem 4.8 to calculate the residue. The residue 

is therefore the value of (2z+2a-1 at the root. By the residue theorem the 

original integral therefore equals →2ZL_. 

We next consider an integral p(x dx where p is a rational func- tion with 

no real poles and the degree of the denominator at least 2 higher than the 

degree of the numerator, so that the integral certainly converges. To 

calculate this using residue calculus, let y be a half cir- cle in the upper 

half plane, centered at the origin and with radius R,  together with the 

real line segment [—R, R]. We give y positive orienta- tion. For R 

sufficiently large, all the poles of p which are in the upper half plane will 

be inside y so that f' p(z dz=2niY2 im Z>o Res p(z.  

On the other hand, along the part of y which is a half-circle we can 

estimate the integral by 

 r|dz| 

p(z dz < sup lz2p(zl -j→w=2n sup lz2p(zl/R → 0 J \z\=R J lzl

 \z\=R 

\z\=R \z\=R Im z>0 Im z>0 

as R → 0, since z2p(z is bounded for large values of lzl, by the 

assumption on the degree of p. It follows that 

p(x dx=2ni Res p(z . Imz>0 
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EXAMPLE. Consider the integral JY XX+l dx which satisfies all the 

requirements above. The poles of the integrand are given by the zeros of 

its denominator, so they are the roots of z4+1=0. Setting z=Reid we 

easily see that the roots are zk→(n/4+kn/2, k=0, 1, 2, 3. The roots in the 

upper half plane are the two first ones. Since the zeros are simple ones, 

the residues are obtained by evaluating 4→=4z at these points. It follows 

that 

x2 

dx=2ni(e-in/4+e-3in/4/4=n→2/2  x4+1 

We next consider an integral p(x→eiax dx where a is real and p a 

rational function without real poles. This is the Fourier transform of the 

function p at -a. We assume that the degree of the denominator of p is 

higher than the degree of the numerator. This does not guarantee absolute 

convergence of the integral, but as we shall see it does imply conditional 

convergence if a=0. In the calculations below we shall assume that a > 0, 

but the case a < 0 can be treated very similarly. This is done either by 

replacing the upper half plane by the lower half plane in the 

considerations below, or else by first making the change of variable tx in 

the integral, which has the effect of replacing a by - a. 

Let A, B and C be positive real numbers. We consider a contour Y 

starting with a segment [—A, B] of the real axis, continuing with a 

vertical line segment from B to B+iC, then a horizontal line segment 

from B+iC to →A+iC and finally a vertical line segment from →A+iC to 

→A. If A, B and C are sufficiently large, this rectangle will contain all 

poles of p which are in the upper half plane so that 

p(zeiaz dz=2ni Y, Res(p(zeiaz . 

Our assumptions guarantee that zp(z is bounded for lzl sufficiently 

large, say lzl > R. Let a corresponding bound be M. If we parametrize the 

vertical line segment from A to A+iC by z=A+it, 0 < t < C the absolute 

value of the corresponding integral may be estimated by 

provided A > R. Similarly, the integral over the other vertical side may 

be estimated by AB provided B > R. Note that these estimates are 
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independent of C. Assuming that C > R and parametrizing the upper side 

of the rectangle by z→t+iC, →B < t < A, we can similarly estimate the 

corresponding part of the integral by A 

f M e-aC dt<M<A+B>J \— t+iC\ - CeaC-L 

This clearly tends to 0 as C → <x>. It follows that 

< a (A+B > "-A 

This shows that the original integral indeed converges, at least condi- 

tionally, and that its value is given by the residues in the upper half 

plane. 

EXAMPLE. Consider the integral "Ol+f dx, whereis real. First note 

that the cos function is even. We may therefore replace £ by \£\ without 

affecting the value of the integral. Next, note that the integral is the real 

part of Xu+f dx which we may evaluate using the method above, and 

then take the real part of. Actually, since it is easily seen that the 

integrand of the imaginary part is an odd function,  the imaginary part is 

zero anyway. Note, however, that we can not evaluate the present 

integral, or integrals similar to it, by considering the residues of "Oa+P, 

since the function cos(z£> is large for large \ Im z\,  in both upper and 

lower half planes. 

According to our deliberations above, we have 

f eiXltl 

/ → dx=2ni > Res 

J x+1 T±^n 

x2+1 → z2+1 Imz>0 

In the upper half plane there is only one singularity, a simple pole at z=i. 

Thus, the residue is obtained by evaluating Aeizl→ at z=i. 

 

EXAMPLE. We will consider one more example of this type of integral, 

with an added difficulty. The integral we want to evaluate is dx. 
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According to our present strategy we ought to relate this to the residues 

of eizfz. Unfortunately this function has a pole at the origin; note that 

there is no such problem with , which is an entire function. This is 

immediately seen from the power series expansion. To circumvent the 

difficulty we modify the path so that the line segment [—A, B] on the 

real axis is replaced by the two line segments [-A, →r] and [r, B], 

connected by a half circle in the upper half plane, centered at the origin 

and with radius r. If 7 denotes this half circle, but run through 

counterclockwise, estimates of the same kind as before show that 

f →dx=Im {[ e-dz+2niRes - } . 

i 17 X Y Z im z>0 Z  \x\>r  

Since there are no poles in the upper half plane we only need to consider 

the integral over 7. If we parametrize 7 by z=re%d, 0 <θ < n, the integral 

equals i exp(ire→e d9 which tends to in as r → 0. It follows that i~ → 

dx=n. 

Next consider the integral xap(x dx where 0 < a < 1 and p is rational 

with no positive real poles. For convergence we must assume that the 

degree of the denominator in p is at least 2 more than the degree of the 

numerator. Similarly, we may allow at most a simple pole at the origin. If 

we want to relate the value of this integral to the residues of the function 

zap(z, note that we now have a branch point at the origin. However, 

instead of causing difficulties this is actually what will allow us to 

evaluate the integral. 

Suppose we choose the branch of za where the plane is cut along the 

positive real axis and for which 0 < arg z < 2n. This means that za=ea log 

z where log is the corresponding branch of the logarithm. As we 

approach a point x > 0 on the real axis from above we then obtain the 

usual real power xa.  

Intuitively, we would therefore like to choose a contour 7 which starts at 

r > 0 on the 'upper edge' of the real axis, continues to R > r, then follows 

the circle with radius R and centered at the origin,  counter clockwise, 

until we reach R on the 'lower edge' of the real axis,  then back to r, still 
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on the 'lower edge', and finally along the circle with radius r and centered 

at the origin, clockwise, until we reach the initial point again (you will 

need to draw a picture of this. The two contributions from integrating 

along the real axis will not cancel since the power has different values 

along the 'upper' and 'lower' edges. The catch is, there is no such thing as 

an upper or lower edge of the positive real axis; in fact, since we have cut 

the plane along the positive real axis, we can't integrate along it at all. 

The problem can be avoided in the following way. First cut the plane 

along some ray from the origin other than the positive real axis. In the 

remaining part of the plane define a branch of za by requiring its values 

to be real on the positive real axis. Now pick a contour, starting at r > 0, 

continuing to R > r, then along the circle of radius R as before, but stop 

before you reach the branch cut and go back along a ray u, which does 

not contain any pole of p, until you reach the circle with radius r again. 

Finally, continue clockwise along this circle until you reach the point r 

again. 

Next, pick another branch of za by cutting the plane along a ray which 

comes before u, counted counterclockwise from the positive real axis. 

Fix the branch by requiring its values on u to coincide with the values of 

the earlier branch. This will give the branch the value ei2naxa for a real, 

positive x. We integrate the new branch along a contour which starts at 

R, continuous along the positive real axis to r, then follows the circle 

with radius r clockwise until it reaches the ray u,  then follows this ray 

outwards until it reaches the circle with radius R. Finally, it follows this 

circle counterclockwise until it reaches the point R on the positive real 

axis again. 

If we add the two integrals constructed above, the contributions to them 

along the ray u will cancel, and the total effect will be exactly as if we 

could integrate as we originally did, letting za have different values along 

the 'upper' and 'lower' edges of the positive real axis. In view of this, we 

will not commit any errors of we think of this as being possible. 

Now let us estimate the integrals along the circles. Note that \za\ = \z\a 

whatever branch we use (as long as a is real. Our assumption on the 
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degree of p means that z2p(z is bounded, say by M, for large \z\. If R is 

sufficiently large  

Note that it is extremely important that one uses the branch of za where 

the plane is cut along the positive real axis and 0 < arg z < 2n. 

This is actually true for →1 < a < 0 too, since in that case we may write 

a+1 

the integrand as x(X2+i where now 0 < a+1 < 1 so all the assumptions 

are satisfied. But the residues remain the same since za+1 /z _ za, using 

the same branches of the powers. The formula is of course also true for 

a=0, for elementary reasons. 

5. We finally consider an integral f0° p(x In xdx, where again p is 

rational without positive real poles. We still need to assume that the 

degree of the denominator in p is at least 2 more than that of the 

numerator. In contrast to integrals of type 4, however, we can no longer 

allow a pole at the origin. On the other hand, we use the same contour,  

justifying the use of different values of the logarithm along the 'upper' 

and 'lower' edges of the positive real axis as before. If we consider p(z 

log z, using the branch of the logarithm where 0 < arg z < 2n, its values 

at x > 0 on the 'upper' edge of the positive real axis is p(x ln x,  where ln 

is the usual real logarithm. For x > 0 on the 'lower' edge we instead get 

p(x(lnx+2ni. The difference is therefore →2nip(x,  so we will not get 

the integral we are looking for. So, instead we consider the function (log 

z2p(z which is (ln x2p(x on the upper and (ln2 x+4in ln x → 4n2p(x 

on the lower edge of the positive real axis. The difference is therefore 

→4nip(xln x+4n2p(x.  

If, as we normally assume, p has real coefficients we can therefore cal- 

culate the desired integral by taking the real part of the right hand side. 

Otherwise, we would first have to calculate the second integral by 

integrating p(z log z as in our first attempt. 

EXAMPLE. Consider the integral f0° X2+L dx which satisfies the 

assumptions above. Using the appropriate branch in the plane cut along 

the positive real axis, the function (lo2g+1 has simple poles at ±I Z +1 
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so the residues are the values of (l°gZ→ at these points. The sum of the 

residues is therefore J((in/22 → (i3n/22=—in2 which is purely 

imaginary.  

Incidentally, by taking the imaginary part, we also get fZ° j+X=n/2,  but 

there is of course an easier way of getting this. 

EXAMPLE  As a final example we consider an integral of type 5, but 

with an added difficulty. Since lnx has a simple zero at x=1 it ought to be 

possible to allow a simple pole of p at 1. This causes problems, however, 

since the branch of the logarithm we use on the 'lower edge' of the 

positive real axis does not have a zero at 1. To circumvent the difficulty, 

we replace the part of the integral along the lower edge between 1+r and 

1 → r by a half circle of radius r > 0 in the lower half plane, centered at 

1. As an example, consider fZ° X2dx. The integral along the half circle. 

 

4.4 THE ARGUMENT PRINCIPLE 

The following theorem is a simple consequence of the residue theorem. 

THEOREM. Suppose that f is meromorphic in a simply con- nected 

region Q and that 7 is a cycle in Q.                                                                                     

Assume further that f has zeros al, a2, ... , an and poles bl, b2, ... , bk in 

Q, each repeated according to multiplicity and none of them on y. Then 

1 f f'(z →2U J Wdz=n{l'a'" n{''-bi 1 

We normally choose y so that the index of each zero and pole with 

respect to y equals one, and then the right hand side becomes the 

difference between the number of zeros and the number of poles in Q,  

each counted by multiplicity. 

PROOF. If f (z=(z → ang(z where n is a non-zero integer,is 

analytic near a and g(a=0, then f '(z=n(z→an→lg(z+(z→ang'(z so 

that →rr =+g4z• The last term is analytic near a, so the residue 

f (z z→a g(z J  
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of the left hand side at a is n. Since \n\ is the multiplicity of a as a zero 

respectively pole, the theorem follows from the residue theorem.   

The theorem is usually known as the argument principle, for the 

following reason. If y is a closed arc, the integral fZ dz equals Jfoy Z, as 

is easily seen using the definition of the integral through a 

parametrization. Thus the integral is nin(f o y, 0. But this is the variation 

of the argument of z as z runs through f oy. To see this, note that the 

principal logarithm is a primitive of 1/z away from the negative real axis. 

Now, f o y may intersect the negative real axis at certain points; assume 

for simplicity that they are finitely many. At every such intersection we 

have to add or subtract 2n from the argument of z, depending on whether 

we intersect from below or above. Between two intersections we may 

calculate the integral by using the principal branch of the logarithm. 

Adding everything up, the real parts will cancel, and what remains is an 

integer multiple of ni, in other words i times the variation of the 

argument along the curve. Clearly the variation of the argument of z 

along f o y is the same as the variation of the argument of f (z along y. 

The integral is therefore (i times the variation of the argument of f (z as 

z runs through y. Since one can often find the variation of argument 

without calculating the integral, this gives information on the number of 

zeros or poles in a region. Used this way, the argument principle is of 

great importance to many applications in control theory and related 

subjects. We give a few examples of how this is done. 

EXAMPLE. We wish to find the number of zeros in the right half plane 

of the polynomial p(z=z5+z+1. 

If z=iy is purely imaginary p(z=iy(y4+1+1 has real part 1,  so is never 

zero. If 0 is the argument of p(iy we have tan0=y(y4+1 which tends to 

+to as y → +to and →^ as y → →to. Running through the imaginary 

axis from iR to →iR for a large R > 0                                    the argument 

thus decreases by nearly n. On a large circle \z\=R we have 

p(z=z5(1+z"4+z"5, where the second factor is nearly one, so that its 

argument varies very little, whereas the argument of the first factor 

increases by 5n as we follow the circle in a positive direction from -iR to 
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iR. The variation of argument of p along the boundary of the large 

halfdisk is therefore nearly 4n, and since it must be an integer multiple of 

2n it is exactly 4n. There are therefore exactly two zeros inside the 

halfcircle if it is sufficiently large. In other words, there are precisely two 

zeros in the right half plane! 

EXAMPLE. We wish to find the number of zeros in the first quadrant of 

the polynomial f (z=z4 → z3+13z
2
 → z+36. 

First note that there are no zeros on either the real or imaginary axes 

since for z=xR we have 

x → x+13x → x+36=(x+1(x  +— x +—— > 0 

and for z=iy, yR we have 

z4 → z3+13z
2
 → z+36=y4 → 13y

2
+36+i(y3 → y. 

The imaginary part vanishes only for y=0 and y=±1, neither of which is a 

zero for the real part. Now let y be the line segment from 0 to R > 0, 

followed by a quarter circle of radius R centered at 0 and ending at iR, 

and finally the vertical line segment from iR to 0. For R sufficiently 

large, all the zeros in the first quadrant will be inside y, so we only need 

to calculate the variation of argument for the polynomial along y. Since f 

> 0 on the real axis, the argument stays equal to 0 along the horizontal 

part of y. For \z\=R we write f (z=z4(1 → 1+If → Z3+3I. Note that the 

bracketed expression tends to 1 as R → to so its argument varies only a 

little around 0. The argument of the first factor varies 4 times the 

variation of the argument of z, i.e., by 42=2n. So, along the circular arc 

the argument varies close to 2n. 

It remains to find the variation of the argument along the imaginary axis.                                                 

If 0 denotes the argument of f (z, then tan 0=y4→yi;"y
2
+36. For y=0 this 

is 0, and for y → to we get tan 0 → 0. The argument variation along the 

vertical part of y is therefore close to some integer multiple of n. To go 

from one multiple to the next, tan 0 will have to become to in between. 

This happens at the zeros of y4 → 13y
2
+36 = (y2 →θ(y2 → 

4=(y+3(y+2(y → 3(y → 2. The first two factors stay positive for y > 
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0 so the denominator in tan 0 passes from positive to negative as y 

decreases through 3, and from negative to positive as y decreases past 2. 

In both these points the numerator is positive, so tan 0 passes from +to to 

→to as y decreases through 3 and then from → to back to +to as y 

decreases through 2. 

Hence, if we start at y=R for a large value of R, the variation in argument 

along the vertical line segment is close to 0.                                                                    

Therefore for large R > 0 the variation in argument of f along 7                                                      

is close to 2n, and since it has to be an integer multiple of 2n,                                                         

it is exactly 2n. There is therefore exactly one zero of f in the first 

quadrant. 

A useful consequence of the argument principle is the following 

theorem. 

THEOREM. (Rouche's theorem. Suppose f andare analytic in a 

simply connected region Q a, nd that 7 is a cycle in Q such that n(7, z is 

0 or 1 for every zQ. 

Also assume that \f (z → g(z\ < \f (z| for z7. Then f and g have the 

same number of zeros, counted with multiplicity, enclosed by 7 (i.e., for 

which the index with respect to 7 is 1. 

PROOF. The inequality shows that neither f norcan have a zero = , 

then the zeros for F are the zeros for g f (z' y 

and the poles for F are the zeros for f. We therefore need to show that F 

has the same number of zeros and poles, i.e., that the variation of 

argument of F along 7 is 0. Note that this is true even if f andhave 

common zeros so that there is some cancellation in F. 

However, by assumption \F(z → 1\ < 1 for z7. Hence F has all its 

values on 7 in the disk with radius 1 centered at 1, which does not 

contain the origin. Hence the variation of argument is 0 (give a detailed 

motivation, for example using the principal logarithm.   

EXAMPLE. We shall determine the number of zeros in the right half 

plane of the function g(z=a → z → e-z, where a > 1. 
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It is clear that the function f (z=a → z has only the zero z=a,  which is in 

the right half plane. If 7 is a positively oriented half circle in the right 

half plane, with radius R and centered at the origin, this zero is inside 7 

as soon as R > a. For z=iy on the imaginary axis we have \f(z\=\ja2+y2 

> a > 1, and on the circular arc we have \f (Re%e\=\Re%e → a\ > R → a 

> 1 if R > 1+a. But \f(z → g(z\=\e-z\=e-Rez < 1 for z in the right half 

plane. Hence \f(z → g(z\ < \f(z\ for z7 as soon as R > 1+a. 

Therefore, by Rouche's theorem,has exactly one zero in the right half 

plane, and this zero has absolute value < 1+a. 

The next theorem demonstrates a very important topological prop- erty 

of an analytical map. 

THEOREM. Suppose f is analytic at z0 and that f (z0=w0 with 

multiplicity n, i.e., f (z → w0 has a zero of multiplicity n for z=z0. 

Then, for every sufficiently small> 0 there exists a 6 > 0 such that if \a 

→ Wo\ < 6, then f (z=a has exactly n roots (counted with multiplicity 

in \z → z0\ < £. 

PROOF. Since zeros of analytic functions are isolated, we may re- 

quire> 0 to be so small that z0 is the only point in \z → z0\ <where 

f (z → w0=0. If 6=min f (z → Wq| it follows that the integral \z-

Z0\=\z-zo\=s 

is continuous as a function of a for \a → w0\ < 6. But it is also an integer, 

so it must be constant in this disk. Since it equals n for a=w0 

the theorem follows from the argument principle. 

We restate the most important part of the conclusion of Theo- rem as the 

open mapping theorem. 

COROLLARY. Suppose f is analytic in some region and not constant. 

Then f is an open mapping, i.e., the images of open sets are open. 

PROOF. If zo is in the domain of f, then by Theorem the image of any 

sufficiently small neighborhood of z0 contains a neighborhood of f (z0. 

Hence f is an open mapping.   
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Note that n =1 in Theorem exactly if f'(z0=0, and that n =1 means that 

the inverse function f-1 is defined in \z → w0\ < 6. By Corollary the 

inverse function has the property that the inverse image of an open set 

under f-1 is open; in other words, the inverse is continuous. But by 

Theorem this implies that f-1 is analytic,  with (f-1'(z=1/f'(f-1(z (note 

that the denominator is=0 here. We therefore also have the following 

corollary. 

COROLLARY. If f'(z0=0, then f maps a neighborhood of z0 

conformally and topologically (i.e., continuously and with continuous 

inverse onto a neighborhood of f (z0. 

It remains to see what type of mapping we have in a neighborhood of a 

point z0 where f'(z0=0. We have one very well known example; the 

function z → zn where n is an integer > 1. This function has an n-fold 

zero at z=0, and the image of a neighborhood of 0 covers a neighborhood 

exactly n times. This is, in fact, what happens in general. To see this, 

consider a function f such that f (z → w0 has a zero of order n at z0. We 

may then write f (z=w0+(z → z0ng(z, where g is analytic where f is, 

and g(z0=0. According to Corollary 3.20 we may therefore define a 

single-valued branch h(z of tfg(z which is analytic in a neighborhood of 

z=z0. 

Note that d(z → z0h(z=h(z+(z → z0h'(z which equals h(z0 = 0 for 

z=z0. The function z → (z → z0h(z therefore maps a neighbor- hood of 

z0 conformally onto a neighborhood of 0. We may therefore view f 

(z=w0+((z → z0h(zn as a composite of this function, of the function z 

→ zn, and a translation. It follows that the image of a                           

small neighborhood of z0 under f covers a neighborhood of w0 exactly n 

times. 

We turn now from these general considerations to a very useful and very 

specific result. 

THEOREM. (Maximum principle. Suppose f is analytic in a region Q. If 

\ f \ has a (local maximum in Q, then f is constant. 
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A variant of this states that if f is analytic in a compact set, then the 

maximum of \f \ on the set is taken on the boundary unless f is constant. 

This follows from Theorem and the fact that a function continuous on a 

compact set, in this case \f \, takes a maximum value. 

PROOF. Suppose f is not constant. According to the open mapping 

theorem, given any neighborhood O of z0, all values in a sufficiently 

small neighborhood of f (z0 are taken in O. Some of these values will be 

further from the origin than f (z0, so \f (zo\ can not be a local maximum 

value of \f \.  

A rather special, but as it turns out, very useful, consequence of the 

maximum principle is the following. 

THEOREM. (Schwarz' lemma. Suppose f is analytic in \z\ < 1,  that \f 

(z\ < 1 and f (0=0. Then \f (z\ < \z\ for \z\ < 1, \f/(0\ < 1,  and if 

equality occurs in either of these inequalities, then f (z=cz for some c 

with \c\=1. 

PROOF. The function g(z=f (z/z has a removable singularity at 0; we 

must set g(0=f'(0. For \z\=R < 1 we have \g(z\ < \z\_1=1/R so by the 

maximum principle we have \g(z\ < 1/R for \z\ < R. Given any z with \z\ 

< 1 we therefore have \g(z\ < 1/R for all R, \z\ < R < 1. Letting R → 1 

we get \g(z\ < 1 in the unit disk. The maximum principle finally tells us 

that if we have equality anywhere, i.e., a local maximum of \g\, thenis 

constant. The theorem follows.  

Schwarz' lemma has a very important application in determining to what 

extent conformal maps are unique. Later we shall show that any simply 

connected region can be mapped conformally and bijec- tively onto the 

unit disk. This immediately shows that any two simply connected regions 

may be mapped conformally and bijectively onto each other, since one 

may first map both conformally and bijectively onto the unit disk, and 

then compose the inverse of one map with the other map. The resulting 

function then maps one region onto the other conformally and 

bijectively. 
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It is clear that uniqueness questions can also be answered if they can be 

resolved for the special case of a map onto the unit disk. It is 

immediately clear that if there is a conformal map of Q onto the unit 

disk, then we can pick any point z0Q and require it to be mapped to                        

0. For, by assumption there is a conformal map of Q onto the unit disk; 

suppose the image of z0 is w0. We can then find a Mobius transform that 

maps the unit disk onto itself and takes w0 to 0. Composing the original 

map with this Mobius transform we obtain a map of Q which takes zo to 

0. Is this map unique? 

Suppose f andboth map Q conformally onto the unit disk, and both 

map z0Q onto 0. Then f o g-1 maps the unit disk onto itself and keeps 

0 fixed. By Schwarz' lemma \f o g-1(w\ < |w|. But setting z=f o g-1(w 

this means \g o f-1(z\ > \z\. On the other hand,  Schwarz' lemma again 

tells us that \g o f-1(z\ < \z\ so that in fact equality holds throughout the 

unit disk. A final use of Schwarz' lemma tells us that f o g-1(z=cz where 

\c\=1. 

Note that c=(f og-1'(0=so that if we specify the argument of the 

derivative at z0 as well, the map is unique. A particular case is of course 

when Q is the unit disk itself; it follows that the only automor- phisms of 

the unit disk (bijective conformal maps of the unit disk onto itself are 

the Mobius transforms with this property. More generally,  given any 

two regions that are circles or half planes, the only bijective conformal 

maps of one onto the other are Mobius transforms. Similar statements 

can be made with respect to the other special regions for which we found 

explicit conformal maps (wedges, infinite strips, etc.. 

Check your Progress - 1 

Discuss Laurent Expansions  

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 
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Discuss The Residue Theorem  

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

  

4.5 LET US SUM UP 

In this unit we have discussed the definition and example of Laurent 

Expansions And The Residue Theorem,  Residue Calculus The 

Argument Principle 

 

4.6 KEYWORDS 

Laurent Expansions And The Residue Theorem.. In this section we will 

give an expansion generalizing the power series expansion of an analytic 

function 

Residue Calculus … In this section we shall see how one may use the 

residue theorem to calculate certain real integrals. We will only discuss a 

few types of integrals that can be handled; many others exist. 

The Argument Principle … The theorem is a simple consequence of the 

residue theorem. 

4.7 QUESTIONS FOR REVIEW 

Explain Laurent Expansions 

Explain The Residue Theorem  

 

4.8 ANSWERS TO CHECK YOUR 

PROGRESS 
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Laurent Expansions    (answer for Check your Progress - 1 Q 

) 

 

The Residue Theorem    (answer for Check your Progress - 1 Q 

) 

 

4.9 REFERENCES 

Complex Analysis, Basic of Complex Analysis, Complex Functions & 

Variables, Complex Variables, Introduction To Complex Analysis, 

Application Of Complex Analysis & Variables, Complex Functions, 

Complex Numbers & Analysis, The Complex Number System 
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UNIT  -  V: HARMONIC FUNCTIONS 

 

STRUCTURE  

5.0 Objectives 

5.1 Introduction  

5.2 Harmonic Functions 

5.3 Dirichlet's Problem 

5.4 Exponential Form 

5.5 Let Us Sum Up   

5.6 Keywords   

5.7 Questions For Review   

5.8 Answers To Check Your Progress 

5.9 References  

5.0 OBJECTIVES 

 

After studying this unit,  you should be able to: 

Learn, Understand about Harmonic Functions 

Dirichlet's Problem 

Exponential Form 

5.1 INTRODUCTION 

In this part of the course we will study some basic complex analysis. 

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematic 

In this section we will study complex functions of a complex variable, 

Harmonic Functions, Dirichlet's Problem, Exponential Form 
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5.2 HARMONIC FUNCTIONS 

Fundamental properties 

Suppose f is analytic in some region Q and u, v are its real and imaginary 

parts, so that f (x+iy=u(x, y+iv(x, y. Then u and v are harmonic in Q, 

according to the following definition. 

DEFINITION. A function u defined in an region Q  C is called 

harmonic if it is twice continuously differentiable in Q and satisfies 

This follows since u, v satisfy the Cauchy-Riemann equations 

 

Since f is infinitely differentiable, we can differentiate the first equation 

with respect to x, the second with respect to y, and add the results to 

obtain Au=0, using that vxy=vyx. Similarly one shows that v is 

harmonic. 

If a function u, harmonic in Q, is given, then another harmonic function v 

is called a conjugate function to u in Q if u+iv is analytic in Q. Note that 

if u has a conjugate function in some region, then it is determined up to 

an additive real constant. For suppose u+iv and u+iv are both analytic. 

Then so is the difference i(v → v which has real part 0. It follows that 

the imaginary part v → v is constant (this follows from the Cauchy-

Riemann equations, but also directly from the open mapping theorem. 

Note that if v is the harmonic conjugate of u, then →u is the har- monic 

conjugate of v, since v → iu(u+iv is analytic if u+iv is. A harmonic 

function does not necessarily have a conjugate function defined in all of 

its domain; consider for example ln \Jx2+y2 which is the real part of any 

branch of the logarithm and therefore harmonic in R2 \ {(0, 0}. It can 

not have a conjugate function in this set, because that would imply that 

we could define a single-valued branch of the logarithm in the plane with 

just the origin removed. But we can't. On the other hand, locally there is 

always a conjugate function. In fact,  the following theorem holds. 
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THEOREM. If u is harmonic in a disk, then it has a conjugate function 

there. 

PROOF. Suppose (x0, y0 is the center of the disk and set v(x, y = J→o 

ux(x, t dt → f0 uy(t, yo dt for any (x, y in the disk. Note that v is well 

defined since we are only evaluating u at points in the disk. By the 

fundamental theorem of calculus we have vy=ux and differentiating 

under the integral sign we obtain 

Vx(x, y=j uxx(x, t dt → uy(x, yo 

y= → j uyy (x, t dt → uy (x, y0→uy (x j y j 

using the fact that u is harmonic. So, v is a harmonic conjugate of u. 

Since analytic functions are infinitely differentiable we immediately 

obtain the following corollary. 

COROLLARY. Harmonic functions are infinitely differentiable. 

There is a much more general version of the theorem, which states that 

any function harmonic in a simply connected region has a har- monic 

conjugate there. However, since this follows from Exercise 5.5 below 

and the Riemann mapping theorem, which we will prove later,  we will 

not attempt a proof here. 

COROLLARY. Suppose f is analytic in Q and u is harmonic in the range 

of f. Then u o f is harmonic in Q. 

PROOF. In a neighborhood of any point in its domain u has a con- jugate 

function, so it is the real part of some analytic functiondefined near 

the point. Since the compositeo f is analytic, its real part u o f is 

harmonic.  

EXERCISE. Suppose u is harmonic in the region Q and that one can find 

a bijective conformal mapping of Q onto the unit disk. Show that u has a 

harmonic conjugate in Q. 

The next theorem is also a simple corollary of Theorem but it is so 

important it is a theorem anyway. 
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THEOREM. (Mean value property. Suppose u is harmonic in the open 

disk centered at z with radius R, and continuous in the closed disk. Then 

2n  u(z=— [ u(z+Reld dd . 

 

PROOF. In the open disk u is the real part of an analytic function f, by 

Theorem. If 0 < r < R Cauchy's integral formula implies that f (z=, /j→-

z\=r f→z dZ. Parametrizing the circle by Z=z+re,  0 <θ < 2n, gives 

f (z=hj f (z+re" dθ  

Taking the real part of this gives the desired formula with R replaced by 

r. By the continuity of the integrand, however, we may now let r → R 

and so obtain the desired result.  

Clearly one can calculate mean values in the above sense for any 

continuous function. Interestingly enough, any continuous function 

having the mean value property has to be harmonic (and is therefore also 

infinitely differentiable. We will show this in Theorem. 

THEOREM. (Maximum principle. Suppose u is continuous on the 

closure of a bounded region Q and satisfies the mean value property in 

Q. Then u takes its largest and smallest value in Q on dQ, and if either is 

assumed in an interior point, then u is constant. 

PROOF. Suppose aQ and supQ=u(a. There is a disk \z → a\ < R 

contained in Q, and u(a+re%d < u(a for allθ and 0 < r < R. If there is 

strict inequality for some choice of r, θ, then there is strict inequality in a 

neighborhood by continuity, and 2- u(a+re%e d9 < u(a, violating the 

mean value property. 

Thus the set M={zQ \ u(z=u(a} is open, as is the comple- ment 

{zQ \ u(z=u(a} by continuity. Since Q is connected and M=0 it 

follows that M=Q, so that u is constant. 

Since →u satisfies the mean value property if u does, the statement about 

smallest value follows as well.  
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Harmonic functions satisfy the mean value property, so the theorem 

applies to harmonic functions. We obtain a corollary, which is also 

referred to as the maximum principle. 

COROLLARY. Suppose u is harmonic and not constant in a region Q. 

Then u has no local extrema in Q. 

PROOF. By Theorem u is constant in a neighborhood of a local 

extremum point a. Consider the set 

M={zQ \ u(Z=u(a for Z in a neighborhood of z} 

Clearly M is open. But if zjM, zj zQ, then any neighborhood of z 

contains a disk where u is identically u(a. Therefore, near z the function 

u is the real part of an analytic function which is constant on an open set 

and therefore is constant. It follows that zM so M is also relatively 

closed in Q. Since Q is connected and M=0, it follows that M=Q, i.e., u 

is constant in Q.  

A problem of great importance both for the theory of harmonic functions 

and their applications is Dirichlet's problem. It concerns the possibility of 

finding a function harmonic in a given region, continuous on its closure, 

and taking prescribed values on the boundary. There are also other, more 

general formulations which will not concern us here. Note that if we can 

solve Dirichlet's problem for some region Q, and if we can find a 

conformal map of Q onto some other region u which extends 

continuously as an invertible map of the closure of Q onto the closure of 

u, then by Corollary  we can also solve Dirichlet's problem for the region 

u.  

THEOREM. If Dirichlet's problem has a solution for a bounded region 

Q, then it is unique. 

PROOF. Suppose u and v are harmonic in Q, continuous in the closure  

and agree on dQ. Then u → v is harmonic in Q and vanishes on the 

boundary. But according to Theorem it takes both its largest and smallest 

value on the boundary; we therefore have u=v throughout Q.  
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To prove the existence of a solution is much harder, and requires 

additional assumptions. We will here give a solution for the simple case 

when Q is a disk centered at the origin. In the next section we will show 

the existence of a solution in much more general circumstances. 

We start by assuming that we have a function u, harmonic in \z\ < R and 

continuous in \z\ < R. We should like to express the values of u in the 

interior of the disk in terms of its values on the boundary. The mean 

value property gives us such a formula for the center of the circle. An 

obvious way of trying to get a formula for other interior points would be 

to use a Mobius transform to map the unit disk onto the given disk in 

such a way as to map the origin to a given point a in the disk. The map 

T(Z=RRffaZ, which has inverse Z=RR→z, does exactly that. If 

Dirichlet's problem for the disk \z\ < R has a solution, it must be given by 

Poisson's integral formula. Note that = Re Z-a and that for \a\ < R the 

integral is an analytic function of a, as is seen by differentiating under the 

integral sign. The real part of this integral is Poisson's integral, so that the 

imaginary part is a conjugate harmonic function to u in \z\ < R. But is an 

analytic function whether u is harmonic or not, as long as it behaves well 

enough on the boundary \ z\=R for us to be allowed to differentiate under 

the integral sign. Continuity is certainly enough. It follows that Poisson's 

integral represents a harmonic function for any function u defined and 

continuous on \z\=R. We denote this function by Pu, so that we know 

that Pu=u in the disk if u is known to be harmonic in the interior and 

continuous on the closed disk. 

If u is only defined and continuous on the boundary we still know that Pu 

is harmonic in the interior. To show that Pu solves Dirichlet's problem, it 

only remains to show that it assumes the correct boundary values. First 

note that, since a constant is harmonic, the integral of the Poisson kernel 

2- Rr→R is 1 for all a, \a\ < R. Since the Poisson kernel is also positive.it 

follows that 

2n R2 a 2 

!P„(a - u(Re*\ < →J \u(Re« - u(Re»\^ → → d . 
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Given> 0 we may find S > 0 so that \u(Re%e → u(Re*\ <for 0 → 

S <θ < 0+S. The integral over [0, 0 → S] U [<f+S, 2n] (if 0=0,  over [S, 

2n → S] clearly tends to 0 as a → Re→, and the integral over [0 → S, 

0+S] (respectively [0, S] U [2n → S, 2n] is < e. It follows that \Pu(a → 

u(Re→\ → 0 as a → Re* so that actually Pu tends to the correct 

boundary values. We have proved the following theorem. 

THEOREM. Suppose u is a continuous function defined on \z\ = R. Then 

the function which equals Pu(z for \z\ < R and u(z for \z\=R is 

harmonic in \z\ < R a, nd continuous in \z\ < R. 

In the process of solving Dirichlet's problem we also obtained  which 

expresses the values of a function analytic in the disk |z| < R in terms of 

the boundary values of its real part, in the case when these are assumed 

continuous. This is a well-known theorem by H. A. Schwarz. 

THEOREM. Suppose u is continuous in a region Q C C and has the 

mean value property there. Then u is harmonic. 

PROOF. Let \z → z0\ < R be an open disk with closure contained in Q 

and Pu the Poisson integral applied to u(-+z0. Then Pu( +z0 is 

harmonic in the disk so that Pu → u satisfies the mean value property in 

the disk and is continuous in its closure. Therefore Pu → u satisfies the 

maximum principle Theorem in the closed disk. But Pu → u vanishes on 

the boundary of the disk and is therefore identically 0. Thus Pu=u in the 

disk, so that u is harmonic.  

We finally consider the reflection principle. In order to formulate the 

theorem, let us call a region Q symmetric with respect to the real axis if 

for each z it contains z if and only if it contains z. We denote the 

intersection of Q with the real axis by a and the part of Q which is in the 

(open upper half plane by Q+. 

THEOREM:(Reflection principle. Suppose v is continuous in Q+ U a, 

vanishes on a and is harmonic in Q+. Then v has a har- monic extension 

to Q satisfying the symmetry v(z=—v(z. If v is the imaginary part of a 

function f analytic in Q+, then f has an ana- lytic extension to Q sa, 

tisfying f (z=f (z. 
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PROOF. If we define the extension of v by setting v(z=—v(z for zQ 

fl {z \ Im z < 0} it is clear that v is continuous in Q and harmonic except 

possibly on a. Let p be an arbitrary point on a. We need to show that v is 

harmonic in a neighborhood of p. Let R > 0 be so small that the disk \z 

→ p\ < R is contained in Q, and let Pv be the Poisson integral 

corresponding to this disk, extended by continuity to the boundary of the 

disk. Then Pv is harmonic in \z → p\ < R and we will be done if we can 

prove that Pv coincides with v there. 

Now Pv vanishes on the real diameter of \z → p\ < R because of the 

symmetry in v, and the boundary values of Pv on \ z → p\=R coincide 

with those of v, by Theorem 5.10. Hence the function Pv → v,  which is 

harmonic in the half disk \z → p\ < R, Im z > 0, has vanishing boundary 

values in this half disk. By the maximum principle Pv=v in the half disk, 

so Pv is a harmonic extension of v to the whole disk,  and obviously has 

the same symmetry as v. It follows that Pv coincides with v in the disk, 

so that v is harmonic there. 

Now suppose f is analytic in Q+ with imaginary part v there. Con- sider a 

disk as before with center on a. In this disk v has a harmonic conjugate 

→u so that g=u+iv is analytic in the disk. Now g(z is also analytic in the 

disk and the function g(z → g(z is analytic in the disk, has zero 

imaginary part and vanishes on the real axis. It follows that this function 

is identically zero so thathas the appropriate symmetry. Since f 

→has zero imaginary part in the upper half circle it is a real constant 

there. It follows that f can be extended analytically as claimed.  

 

5.3 DIRICHLET'S PROBLEM 

In this section we will solve the Dirichlet problem by Perron's method. 

Recall first that one version of Dirichlet's problem is the following: 

Find a function u harmonic in a given region Q such that u(z → f (C as 

Q 3 z → ZdQ where f is a given 

function on dQ. 
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It is not hard to see that this problem can not be solved in general without 

assumptions both on the boundary values f and the nature of the 

boundary dQ. We will impose such conditions later. Perron's method, 

like many other methods for solving Dirichlet's problem, con- sists in 

converting the problem of finding a solution to a maximization problem. 

To explain how, we need to make the following definition. 

DEFINITION.  A real-valued function v, defined and continu- ous in a 

region Q, is called subharmonic if for every u harmonic in a subregion Q 

of Q the function v → u satisfies the maximum principle in 

n. That v → u satisfies the maximum principle in n means that v → u has 

no maximum in n unless it is constant. The following theorem gives a 

more concrete characterization of sub harmonicity. 

THEOREM. A continuous function v is subharmonic in Q if and only if  

v(zo  2- J v(zo+re d  whenever the disk \z → z0\ < r is contained in Q. 

PROOF. If the inequality holds, then it holds also for v → u since u has 

the mean value property. But the inequality is all that is needed to prove 

the maximum principle so that one direction of the theorem follows. 

Conversely, if v → u satisfies the maximum principle for every har- 

monic u we may for u pick the Poisson integral Pv belonging to v on the 

circle \z → z0\=r. Then v(z → Pv(z approaches 0 as z approaches the 

circle from its interior. By the maximum principle v → Pv < 0 in the 

disk; in particular, for z=z0 we obtain the desired inequality.  

We list some elementary properties of subharmonic functions. 

If v is subharmonic in Q, then so is kv for any non-negative constant k. 

If vi and v2 are subharmonic in Q, then so is vi+v2. 

If v1 and v2 are subharmonic in Q, then so is max(v1, v2. 

If v is subharmonic in Q, D is a disk whose closure is in Q and Pv is the 

Poisson integral corresponding to this disk with boundary values given 

by v, put v=Pv in D and v=v in Q \ D. Then v is subharmonic in Q. 
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The first two properties are immediate consequences either of the 

definition or of Theorem 5.14. The other properties are only a little less 

obvious. 

PROOF. Let v=max(v1, v2 and suppose v → u has a max- imum at 

z0Q  Q, where u is harmonic in Q. We may assume v(z0=v1 (z0. 

We then have 

vi(z → u(z < v(z → u(z < v(zo → u(zo=v1 (zo → u(zo 

for zH. It follows, first that v1 → u is constant, and then from the 

same inequality that v → u is constant. Hence v is subharmonic.   

PROOF. By Theorem v is continuous. We have v < Pv in D so v < v 

throughout Q. Since Pv is harmonic and v subharmonic it follows that v 

is subharmonic except possibly on dD. But if v → u has a maximum at a 

point on dD, then so has v → u so that v → u is constant. But then it 

follows that also Pv → u and hence v → u is constant.  

Note that any harmonic function is also subharmonic. It follows by the 

maximum principle that it is greater than any subharmonic function with 

smaller boundary values. If we therefore let F denote the set of all 

functions v subharmonic in Q which have the additional property that lim 

v(z < f (Z for every (dQ, then the solution of 

Dirichlet's problem, if it exists, ought to be the largest element of F. To 

make sure that F is not empty we now assume that f is bounded,  \f (Z| < 

M for all ZdQ. It follows that any constant < →M is in F, so F is 

definitely not empty. A less important, but convenient,  assumption we 

will make is that also Q is bounded. We now set 

u(z=supv(z , zQ ,  

veF 

expecting this to be the solution of Dirichlet's problem, if it exists. In 

fact, with no further assumptions, u is harmonic in Q. 

LEMMA. The function u defined above is harmonic in Q. To be able to 

prove Lemma we need the following important lemma.  
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THEOREM. (Harnack's principle. Suppose u\, u2, ... is an in- creasing 

sequence of functions harmonic in a region Q. Then either un →

 locally uniformly in Q, or else un converges locally uniformly to 

a function u which is harmonic in Q. 

PROOF. Suppose u is harmonic in a closed disk \z → z0\ < p. The 

Poisson integral formula then states that for z in the open disk 

If p2 → r2 ie 

"(z=2* J u(z°+ 0) 

where r=\z → z0\. Since p → r < \pe%d → (z → z0\ < p+r by the 

triangle inequality the first factor in the integral can be estimated by 

p → r → p2 → r2 p+r 

p+r ~ \pe%e → (z → z0\2 ~ p → r If now u is non-negative in the disk 

we obtain Harnack's inequality 

u(z0  u(z  u(z0 ,  p+r p → r 

by the Poisson integral formula and the mean value property. Now 

suppose r < p/2. Then Harnack's inequality shows that 

1 u(z0 < u(z < 3u(z0 . 

Now consider the sequence u\, u2, .... Since the sequence is increas- ing 

it has a pointwise limit everywhere in Q, which is either finite or +to. If n 

> m the function un → um is positive and harmonic in Q so we can apply 

Harnack's inequality to it. It follows from that if un(z0 → +to, then un 

→ uniformly in a neighborhood of z0. It also follows that the set where 

un tends to is an open subset of Q. Similarly, if un(z0 has a finite limit, 

then the limit is finite in a neighborhood of z0 so the set where the limit 

is finite is also open. Since Q is connected it follows that either un tends 

locally uniformly to in Q, or else the limit function u is finite 

everywhere. Applying (5.3 to un → um and letting n → → we get 

0 < u(z → um(z < 3(u(z0 → um(z0 
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so that the convergence is locally uniform. Finally, to see that u is 

harmonic we may apply the Poisson integral formula to un over any 

circle contained in Q and take the limit under the integral sign, by 

uniform convergence. It follows that locally u is given by its Poisson 

integral so that u is harmonic. The proof is complete   

LEMMA. Suppose v is subharmonic in Q and for some constant 

K we have lim v(z < K for every (dQ. Then v < K in Q. 

Proof. If> 0 there is a neighborhood of dQ where v  K+e. It follows 

that the set E={zQ|v(z  K+e} is closed and since it is bounded (as a 

subset of the bounded set Q, it is in fact compact. If E=0 it follows that v 

has a maximum in E, which will also be an interior maximum in Q. It 

would follow that v is constant > K+e which contradicts the assumption 

about the boundary behavior. Henceis empty, and since> 0 is 

arbitrary the desired conclusion follows.   

Proof. First note that by Lemma v < M for all vF. It follows that u is 

finite everywhere in Q. Now let zoQ. We may then choose a sequence 

vi , v2, ... from F such that vn(z0 → u(z0. We also have vn(z0 < u(z0, 

n=1, 2, .... Now let Vn=max(v1, ... , vn. By property (3 of subharmonic 

functions VnF and vn(z0  Vn(z0  u(z0 so we have Vn(z0 → 

u(z0. In addition the sequence V1, V2, ... is increasing. Now choose a 

disk D containing z0 and whose closure is in Q and let Vn equal Vn 

outside D and the Poisson integral of Vn over dD in D. By property (4 

of subharmonic functions also VnF so Vn < u and it is > Vn by the 

maximum principle. Hence Vn(z0 → u(z0 and V1} V2, ... is 

increasing. Since Vn is harmonic in D we may apply Harnack's principle, 

and since Vn(z0 → u(z0 < to it follows that Vn → U locally uniformly 

in D,  where U is a harmonic function for which U(z0=u(z0. 

Now let z1 be an arbitrary point of D. As before we can then find a 

sequence w1, w2, ... in F such that wn(z1 → u(z1. If we set wn = 

max(wn, vn we still have elements of F, the limit at z1 is unchanged and 

we also have wn > vn. We continue similar to what we did above,  

setting Wn=max(w1, ... , wn and then Wn equal to Wn outside D and 
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equal to the corresponding Poisson integral inside D. The sequence W1, 

W2, ... is then in F, harmonic in D, increasing and Wn(z1 → u(z1. We 

also have Wn > Vn so that Wn(z0 u(z0. As before it follows that in D 

we have Wn → U1 locally uniformly, where U1 is harmonic, 

U1(z1=u(z1, U < U1 and also U1 (z0=u(z0=U(z0. The harmonic 

function U → U1 is therefore non-positive but 0 in z0. By the maximum 

principle it is constant and therefore identically 0. It follows that 

U(z1=u(z1. Since z1 is an arbitrary point of D it follows that U=u in D 

so that u is harmonic in a neighborhood of every point z0Q. The proof 

is complete.  

To deal with the question whether u assumes the desired boundary values 

we need to introduce the concept of a barrier function. 

DEFINITION. A barrier for Q at a point (dQ is a function w harmonic 

in Q and continuous in Q, and such that w(Z=0 but w is strictly positive 

in all other points of Q. 

The following lemma reduces the question of whether u takes the desired 

boundary values to the question of finding barriers. LEMMA. Suppose f 

is continuous at a point Z0 3 dQ and there is a barrier for Q at (0. Then 

u(z → f (Z0 as Q 3 z → Z0. 

PROOF. We will show that we have lim u(z < f (Z0 +and U3z→Zo 

that lim u(z > f (Z0 →for every> 0 from which the theorem 

Q, 3z→—Zo 

follows. 

Let> 0 and choose a neighborhood O of Z0 such that \f (Z → f «0\ 

<for Z 3 O H dQ. Furthermore, let w0 be the minimum of w over the 

(compact set Q \ O. By the properties of w we have W0 > 0. Now put 

V(z=f (Z0 ++ →(M → f (Z0. Then V is harmonic in Q and 

continuous in the closure. For Z3 O H dQ we have V(Z > f (Z0 +> f 

(Z. For Z 3 dQ \O we have w(Z > w0 so we get V(Z > M +> f (Z. 
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If v 3 F and Z 3 dQ we therefore have lim (v(z → V(z < 0 so by 

Lemma v < V in Q. It follows that QBz→Z 

also u < V in Q so that lim u(z  V(Z0=f (Z0. Q3z→Zo 

To prove the other inequality, set W(z=f (Z0—£— (M+f (Z0. Again 

W is harmonic in Q and continuous in the closure. For Z 3 OHdQ we 

have W(Z  f (Z0 → f (Z and for Z3 dQ\O we have w(Z > w0 so 

that we get W(Z < →M →< f (Z. It follows that W3F so that W < u. 

Hence lim u(z > W(Z0=f (Z0 → f. The proof is Q, 3z→— Zo 

complete.  

It is sometimes easy to find a barrier. For example, suppose a point Z 3 

dQ has a supporting line, i.e., a line which intersects the closure of Q 

only in Z, and let a be the direction of the line, chosen so that Q is to the 

left of it. Then lm((z → Z is a barrier for Q at Z. Show this! If Q is 

strictly convex, then every boundary point has a supporting line so there 

is a barrier for Q at every boundary point. To state a more general result, 

we make the following definition. 

DEFINITION. A region Q is said to have the segment property at a 

boundary point Z if there exists a line segment exterior to Q except that 

one endpoint is Z. 

A continuous curve 7 C dQ without self-intersections is called a free 

boundary arc of Q if every point on 7 is the center of a disk which is split 

in exactly two components by dQ. It is called one-sided if one of the 

components is always in Q and the other not. 

It is clear that if 7 is a free onesided boundary arc of Q and 7 has a 

normal at a point Z 3 7, then Q has the segment property at Z; one only 

has to choose a sufficiently short piece of the exterior normal. 

LEMMA. A region Q has a barrier at any boundary point where it has 

the segment property. 

PROOF. Suppose Q has the segment property at (dQ and that the 

other endpoint of the corresponding segment is p. We can then choose a 

complex number a such that the segment is mapped onto the negative 
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real axis by z → aZ→p, the image of ( being 0. Using the principal 

branch of the root it is then obvious that R0→0→ is a barrier for Q  

We collect our results about Dirichlet's problem in the following 

theorem. 

THEOREM. Suppose Q is a bounded region having the segment 

property at each of its boundary points. Then Dirichlet's problem has a 

unique solution in Q for arbitrary boundary values f continuous on dQ. 

5.4 EXPONENTIAL FORM 

 

Let r  and Q  be polar coordinates of the point ( x ,  y   that corresponds 

to a nonzero complex number z=x+iy. Since x=r cos Q and y=r sin Q, 

the number z can be written in polar form as 

z=r(cosQ +i  sinQ  .  

If z=0, the coordinate Q  is undefined; and so it is understood that z =0 

whenever polar coordinates are used. 

In complex analysis, the real number r  is not allowed to be negative 

and is the length of the radius vector for z; that is, r=|z|. The real number 

Q represents the angle, measured in radians, that z makes with the 

positive real axis when z is interpreted as a radius vector. As in calculus, 

Q has an infinite number of possible values, including negative ones, 

that differ by integral multiples of 2n. Those values can be determined 

from the equation tan Q=y/x, where the quadrant containing the point 

corresponding to z must be specified. Each value of Q is called an 

argument of z, and the set of all such values is denoted by arg z. 

The principal value of arg z, denoted by Arg z, is that unique value  

such that → n <  < n. Evidently, then,  

argz=Arg z +2 n n  ( n =0, ±1, ±2, ...  .  

Also, when z  is a negative real number, Arg z  has value n , not → n . 
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PRODUCTS AND POWERS IN EXPONENTIAL FORM 

 

Simple trigonometry tells us that e
l6

 has the familiar additive property of 

the expo- nential function in calculus: 

e
l61

 e
l62

=(cos61+l  sin61 (cos62+l  sin6 2   

= (cos 61 cos 62 → sin 61 sin 6 2 + 

l(sin 61 cos 62+cos 61 sin 6 2   

cos(61+6 2 +l  sin(61+6 2 =e  

Note how it follows from expression that the inverse of any nonzero 

complex number z=re
16

 is Expressions easily remembered by applying 

the usual algebraic rules for real numbers and e
x
. 

Another important result that can be obtained formally by applying 

rules for real numbers to z=re
16

 is 

z
n
=r

n
e

1n6
 (n=0, ±1, ±2, .... 

It is easily verified for positive values of n  by mathematical induction. 

To be specific,  we first note that it becomes z=re
l6

 when n=1. Next, we 

assume that it is valid when n=m, where m is any positive integer. In 

view of expression for the product of two nonzero complex numbers in 

exponential form, it is then valid for 

n = m + 1: 

zm+1=z mz = rmeim6 r ei6= ( rm rei(m6+6= rm+ 1  

ei(m+ 1 6 

Expression is thus verified when n is a positive integer. It also holds 

when n=0, with the convention that z
0
=1. If n1, -2, ..., on the other 

hand, we define z
n
 in terms of the multiplicative inverse of z by writing 

z
n

= ( z
→ 1

 
m

 where mn = 1 ,  2 ,  . . .  .  
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ARGUMENTS OF PRODUCTS AND QUOTIENTS 

 

If Z1 =r1  e
l9{

 and Z2 =r2e
l9z

, the expression 

Z1Z2=(r1 r2e
lθ

'
+9z 2

 

to obtain an important identity involving arguments: 

arg(z1Z2 = arg Z1+arg Z2. 

This result is to be interpreted as saying that if values of two of the three                                             

(multiple valued arguments are specified, then there is a value of the                                                               

third such that the equation holds. 

We start the verification of statement by lettingθ1 andθ2 denote any 

values of arg Z1 and arg Z2, respectively. Expression then tells us thatθ1 

+θ2 is a value of arg(Z1Z2. If, on the other hand, values of 

arg(Z1Z2argz i  are specified, those values correspond to particular 

choices of n  and ni Statement is sometimes valid when arg is replaced 

everywhere by Arg But, as the following example illustrates, that is not 

always the case. 

Check your Progress - 1 

Discuss Harmonic Functions 

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discus Exponential Form 

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 
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5.5 LET US SUM UP 

In this unit we have discussed the definition and example of Harmonic 

Functions, Dirichlet's Problem, Exponential Form 

 

5.6 KEYWORDS 

Harmonic Functions .. Suppose f is analytic in some region Q and u, v 

are its real and imaginary parts, so that f (x+iy=u(x, y+iv(x, y. Then u 

and v are harmonic in Q 

Dirichlet's Problem .. In this section we will solve the Dirichlet problem 

by Perron's method. Recall first that one version of Dirichlet's problem 

Exponential Form .. Let r  and Q  be polar coordinates of the point ( x ,  

y   that corresponds to a nonzero complex number z=x+iy 

5.7 QUESTIONS FOR REVIEW 

Explain Harmonic Functions 

Explain Exponential Form 

5.8 ANSWERS TO CHECK YOUR 

PROGRESS 

Harmonic Functions    (answer for Check your Progress - 

1 Q   

Exponential Form    (answer for Check your Progress - 

1 Q ) 

5.9 REFERENCES 

Complex Analysis, Basic of Complex Analysis, Complex Functions & 

Variables, Complex Variables, Introduction To Complex Analysis, 

Application Of Complex Analysis & Variables, Complex Functions, 

Complex Numbers & Analysis, The Complex Number System 
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UNIT  -  VI: ENTIRE FUNCTIONS….. 

SEQUENCES OF ANALYTIC 

FUNCTION 

 

STRUCTURE 

6.1 Objectives 

6.2 Introduction  

6.3 Entire Functions…..Sequences Of Analytic Functions 

6.4 Infinite Products 

6.5 Canonical Products 

6.6 Partial Fractions 

6.7 Hadamard's Theorem  

6.8 Analytic Functions…..Functions Of A Complex Variable 

6.9 Let Us Sum Up   

6.10 Keywords   

6.11 Questions For Review   

6.12 Answers To Check Your Progress 

6.13 References  

6.0 OBJECTIVES 

 

After studying this unit,  you should be able to: 

Learn,  Understand about Entire Functions…..Sequences Of Analytic Functions 

Infinite Products 

Canonical Products 

Partial Fractions 
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Hadamard's Theorem  

Analytic Functions…..Functions Of A Complex Variable 

6.1 INTRODUCTION 

In this part of the course we will study some basic complex analysis. 

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematic 

In this section we will study complex functions of a complex variable, 

Entire Functions…..Sequences Of Analytic Functions, Infinite Products, 

Canonical Products, Partial Fractions, Hadamard's Theorem, Analytic 

Functions…..Functions Of A Complex Variable 

6.2 ENTIRE FUNCTIONS 

SEQUENCES OF ANALYTIC 

FUNCTIONS 

In this section we shall consider sequences of analytic functions which 

are uniformly convergent. We will use the notation H(Q for the 

functions holomorphic (analytic in the region Q C C. By a region we 

will always mean an open, connected set. Recall that we say that a 

sequence fi, f2, ... of real or complex-valued functions defined on a 

setis uniformly convergent onto another function f defined on E 

provided that for each> 0 we can find a number N such that if n > N 

then \fn(z-f (z\ <for every zE. If one introduces the maximum- |f 

(z| the uniform convergence of fn to f onis equivalent to ||fn → f || → 

0 as n → o. When dealing with functions defined in an open set Q  C 

(or Q  Rn one often talks about locally uniform convergence. A 

sequence of functions fi, f2, ... defined in Q is said to converge locally 

uniformly to f in Q if every xQ has a neighborhood in which the 

sequence converges uniformly to f. Equivalently, this means that fn → f 

uniformly on every compact subset of Q. This is an immediate 

consequence of the Heine-Borel lemma. 
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EXERCISE. Show this equivalence! Recall that in Flervariabelanalys it 

is proved that the uniform limit of continuous functions is continuous. It 

immediately follows that the same is true of locally uniform limits of 

continuous functions (explain why this is obvious!. When dealing with 

analytic functions one can say a lot more. 

The main result of the section is the following. 

THEOREM. Supjpjose fnH(Q, n=1, 2, 3, ... and that fn → f locally 

uniformly in Q. Then fH(Q. Furthermore, fnj → f(j locally 

uniformly in Q for j=1, 2, 3, ... . 

PROOF. Let y be a positively oriented circle such that the corre- 

sponding closed disk is contained in Q. For z in the open disk  

 

Since fn f uniformly on the closed disk the integral on the right 

converges to Jy as n → to. For j=0 the left hand side 

converges to f (z, so that f satisfies the Cauchy integral formula; thus by 

Lemma f is analytic in a neighborhood of every point of Q so that 

fH(Q. By uniform convergence the right hand side of (6.1 converges 

(pointwise to f j(z. Suppose 7 has radius r. I claim that this 

convergence is uniform for z in the disk of radius r/2 concentric to Y, 

which would prove locally uniform convergence and thus finish the 

proof. 

To verify the claim, note that for z in the sub-disk and wY we have |z 

→ w| > r/2 so that 

I r fn(w dw r f (w dw | 

' J (w → zj+1 J (w → zj+1  

 (r/2~J~1 J \fn(w → f (w\ \dw\ → 2nr(r/2-J~1\\fn → f ||y||→Y 

Since fn → f uniformly on y this shows the uniform convergence.   
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Theorem was first proved by Weierstrass in a slightly different 

formulation which we state as a corollary. 

COROLLARY. Suppose f1, f2, ... are all in H(Q and the series Sfc=1 fk 

converges locally uniformly on Q. Then the series converges to a 

function in H(Q; it may be differentiated termwise any number of times, 

and the differentiated series all converge locally uniformly in Q. 

This is obviously equivalent to Theorem. We prove one more result (by 

A. Hurwitz on uniform convergence. 

THEOREM. Suppose fnH(Q for n=1, 2, ... and that fn → f locally 

uniformly on Q as n → 00. Suppose furthermore that none of the 

functions fn assume the value w in Q. Then neither does f, unless f is 

constant (= w. 

PROOF. Replacing fn by fn → w and f by f → w we may as well assume 

that w=0. Assume that f is not identically zero. We must then prove that f 

has no zeros in Q. We know, since fH(Q, that the zeros of f are 

isolated, so any point of Q is the center of a closed disk contained in Q 

and such that f has no zeros on the boundary circle. If y is the positively 

oriented boundary of such a disk, then the number of zeros of f in the 

open disk is given by 2- Jy f'/f, so we need to show that any such integral 

is 0. 

Since z → \f (z\ is continuous and y compact, \f \ assumes a min- imum 

m on y which is > 0 since f has no zeros on y. Since fn → f uniformly on 

7 we have \fn\ > m/2 on 7 for all sufficiently large n. So,  for z 6 7 and 

sufficiently large n we have 

1→ L|= lf(Z ~ fn(z\  A||f _ f\\ 

1 fn (z f (Z 1 \fn (Zf (Z\ " m2 fn f " 

Thus 1/fn → 1/f uniformly on 7,  

fn/fn → f'/f uniformly on 7.  

Thus f7 fn/fn → f7 f'/f. But all the 
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integrals on the left equal 0, because fn are all zero-free in Q. It follows 

that the limit is also 0, and the proof is complete.  

As an almost immediate consequence we have the following interest- ing 

corollary about so called univalent functions. A univalent function is an 

injective (one-to-one analytic function. 

Corollary. Suppose fn H (Q, n=1, 2, ..., and fn → f locally uniformly in 

Q. If all fn are univalent, then so is f, unless it is constant. 

Proof. Assume f is not constant. Then, if f (z0=w, we must show that f 

(z → w=0 for z0 Q \ {zo}. Setting gn(z=fn(z → fn(zo we have gn → f 

→ w locally uniformly in Q. Since by assumption gn does not vanish in 

Q \ {z0}, neither does f → w. 

EXERCISE. Show that for any> 0 there exists N such that all Taylor 

polynomials of sin x of degree at least N has exactly one zero in (n → e, 

n+e. 

EXERCISE. A famous theorem by Weierstrass states that any function 

continuous on a real interval [a, b] is the uniform limit of a sequence of 

polynomials.  

 

6.3  INFINITE PRODUCTS 

 

Any analytic function may be expanded in a power series centered at any 

point of the domain of analyticity; the radius of convergence is such that 

on the boundary of the disk of convergence there is at least one 

singularity of the function. If the function is analytic everywhere in C, 

the radius of convergence is therefore infinite. Such a function is called 

entire (in Britain often also integral. A power series used to be viewed 

as a 'polynomial of infinite order', especially if the radius of convergence 

is infinite. The reason is of course that many properties of polynomials 

have their counterpart for entire functions. 
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One of the more fundamental properties of a polynomial is that,  

according to the fundamental theorem of algebra and the factor the- 

orem, it may be factored into a product of first degree polynomials,  each 

of which vanishes at one of the zeros of the polynomial. If p is a 

polynomial of degree n one usually writes p(z=A rf=1(z → zk, where 

z1, z2, ... are the zeros of p, repeated according to multiplicity,  

and Awhere B is the coefficient of the non-zero term in p with lowest 

degree,  and j is the multiplicity of z=0 as a zero of p (so that j=0 if 

p(0=0. As we shall see in the next section this expansion has a 

generalization to arbitrary entire functions. In this section we shall 

prepare the ground for this by considering infinite products. 

What meaning should one assign to nr=! Ak? The obvious answer is to 

consider the partial products Pn=f([n=1 Ak and then assign to the infinite 

product the value limn→^ Pn if the limit exists. This is almost right, but 

note that the limit is 0 if just one factor is zero, completely independent 

of the values of all the other factors. This does not seem reasonable, so 

one makes the following modified definition. 

DEFINITION The infinite product nr=i is said to converge to P if The 

sequence of partial products converge to P. 

There are only a finite number of zero factors in the product,  and the 

sequence of partial products obtained by excluding these factors 

converge to a non-zero number. 

If Pn → P=0 as n → to it follows that An=Pn/Pn-1 → P/P=1 as n → to, 

so the factors in a convergent product always tend to 1. It is therefore 

convenient to write infinite products on the form 

JJ(1+ak ,  

so that the necessary condition for convergence just derived takes the 

following form. 

PROPOSITION. A necessary (but not sufficient condition for 

convergence of the infinite product is that ak → 0 as k → to. 
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is the highest order coefficient of p. Clearly this does not generalize to 

entire functions; a polynomial of infinite degree can hardly have a 

highest order coefficient. But one may also write 

Since a sequence has a non-zero limit precisely if the sequence of 

logarithms has a finite limit it is natural to compare the infinite product 

with the series with terms log(l+ak. Recall that the principal branch of 

the logarithm is Log z=ln \z\+i arg z, where →n < arg z < n. 

THEOREM. If akl, k=l, 2, ..., then the infinite product 

converges if and only if the series 

5>g(1+ak 

converges. Here Log denotes the principal branch of the logarithm. 

PROOF. Since the terms of a convergent series must tend to 0, and by 

Proposition we must have ak → 0 if either the product or the series 

converges. If Sn denotes the partial sum of the series we have Pn=eSn so 

that the convergence of the product follows from that of the series. 

Conversel assume that Pn → P=0 and choose a branch of the logarithm 

which is continuous in a neighborhood of P.                                        

Then log Pn → log P. We have Sn=log Pn+2knni, where kn is an integer. 

Thus Sn → Sn-1=log Pn → log Pn-i+2(kn → kn-\ni. But since ak → 0 

the imaginary part of Sn → Sn-1 tends to 0.                              Since also 

log Pn → log Pn-1 → 0 it follows that kn → kn-1 → 0 so that, since kn 

is an integer, all kn equal a fixed integer k from a certain value of n on. 

This means that Sn → log P+2kni so the proof is complete.  

We will, by definition, say that the product is absolutely convergent if 

the infinite product nr=i(i+k i converges. By Theorem  this is equivalent 

to the convergence of the positive series 

£log(1+iak| . 

Noting that Log(1+T → 1 as z → 0 (using the principal branch of the 

logarithm it follows by a standard comparison theorem that the series 

(omitting terms for which ak1 is absolutely convergent if and only if 
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1= ak is absolutely convergent (note that if either of the two series are 

convergent, then we must have ak → 0 as k → to. In particular it 

follows that converges if and only →fc=1 iak| converges. So we have 

proved the following proposition. 

PROPOSITION. The product converges absolutely if and only if 1= ak 

converges absolutely. This is also equivalent to the series converging 

absolutely, after omitting (the finite number of terms for which ak→ 1. 

We now turn to the case when the factors of are functions of zC. By 

inspection of the proofs it is clear that all the results ob- tained so far 

remain true if we replace 'convergence' by 'locally uniform convergence'. 

So by Theorem if akH(Q for every k, then  converges locally 

uniformly to a function in H(Q if iak| converges locally uniformly in Q. 

In particular, by Weierstrass' majorization the- orem (Weierstrass' M-test 

in most English language books it follows that this is the case if → 

\\ak\\K converges for every compact K C Q. 

We can now return to the problem of generalizing the polynomial 

factorization to an arbitrary entire function. Suppose that we have an 

entire function for which 0 is a zero of multiplicity j which also has other 

zeros a1}a2, ... , repeated according to multiplicity. By analogy with our 

candidate for this function would then be a constant                                                

multiple of * (i - z. This may not be so, however. 

First of all, there are entire functions with no zeros at all. One example is 

ez; more generally, ea(z is such a function for any entire function g. We 

would certainly have to allow such a factor in front of the product to 

obtain a generally valid factorization. Furthermore, for the product to 

converge absolutely for some *=0 we must require that →2 \gk\ 

converges; this may not always hold, although it is true that we always 

have ak → o as k → o (Exercise 6.12. For example, the function sin(nz 

has zeros 0, ±1, ±2, ... and 1/k is divergent. A little more effort is 

therefore required to obtain a general factorization formula for entire 

functions. We will carry this out in the next section. 

EXERCISE. Prove that if a1, a2, ... are the zeros of an entire function, 

repeated according to multiplicity, then ak → <x> as k → <x>. 
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6.4 CANONICAL PRODUCTS 

Consider first the case of an entire function f with only finitely many 

non-vanishing zeros a1, ... , an, as always counted with multiplicities. If 

the multiplicity of 0 as a zero is j > 0 it is clear that 

h(*=f (**-j/n(i - * 

Lia»is an entire function without zeros. Thus also h'(z/h(z is entire,  so 

it has an entire primitive g. Differentiating h(ze-a(z we obtain h'(ze-a(z 

→ h(z jjzle~a(z=o so that h is a constant multiple of ea. By adding an 

appropriate constant to g, if necessary, we may assume that h=ea. Thus 

we obtain f (z=zjea(z→Y\l=1(1 → ak for some entire function g. If f 

has infinitely many zeros the same reasoning gives the representation 

zjea(z ~ f (z=zj ea(zH (1 

with an entire function g, provided that the infinite product converges 

locally uniformly. This is ensured, by the previous chapter, if → \ak|-1 

converges. 

EXAMPLE. The function is any branch of the root, has zeros (kn2, k 

=1, 2, ... and no others. It is an entire function since it has a power series 

expansion (2-+1 zk. This follows immediately from the expansion of sin 

z. 

EXERCISE. Justify all unproved claims at the end of Example. 

What is one to do to obtain a factorization for an entire function where 

the sum of the reciprocals of the zeros is not absolutely con- vergent? 

The idea is to replace the factor 1 → k in the product by (1 → akePk(k, 

where pk is an entire function which promotes conver- gence without 

introducing new zeros. As we shall see, one can always choose pk to be a 

polynomial. Convergence is obtained by choosing pk so that (1 → akPk 

k is sufficiently close to 1, so the ultimate choice would be → log(1 → 

k. Unfortunately this is not an entire function. It is therefore natural to 

attempt to choose pk as a Taylor polynomial of this function of 
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sufficiently high degree. Now for the principal branch of the logarithm 

→ Log(1 → z=k=1 k and the series converges for \z\ < 1. In fact, if we 

set Ln(z=kkk=1 ik we have → Log(1 → z=Ln(z+Rn(z, where an easy 

estimate gives 

for \z\ < 1. According to the product converges absolutely and locally 

uniformly in z precisely if the series does (check this carefully!. We 

assume now \z\ < R. There are only finitely many factors in for which 

\ak\ < 2R so excluding these factors from the product will not affect 

convergence. We may thus also assume that \ak\ > 2R. If we choose 

pk(z=Lnk(z/ak the absolute value of the term in is \Rnk (z/ak\ and may 

therefore be estimated by 21-nk, using the facts that R/\ak\ < 1/2 and 1 

→ R/\ak\ > 1/2. We conclude that converges absolutely and uniformly in 

\z\ < R if we can choose nk for every k such that the series X^=1 2-nk 

converges. A obvious choice that works is nk=k. Since R is arbitrary we 

conclude that the choice pk (z=Lk (z/ak makes absolutely and locally 

uniformly convergent. We have proved the following theorem by 

Weirstrass. 

THEOREM. There exists an entire function with arbitrarily prescribed                                     

non-vanishing zeros a1 , a2, ... (repeated according to multiplicity, 

provided they are either finitely many or else ak → to as k → to Every 

entire function with these and no other zeros may be written 

yie(z n (1 - Z Lnk(at 

is an entire function, Ln(z→Z1=i k, and nk, k=1, 2, ... are certain 

(sufficiently large positive integers. A possible choice is nk=k. 

The theorem has a very important corollary concerning meromorphic 

functions. Recall that a function f is called meromorphic in Q if it is 

analytic in Q except for isolated singularities which are poles. 

COROLLARY. Every function which is meromorphic in the whole plane   

is the quotient of two entire functions. 

PROOF. If f is meromorphic in the whole plane we may, according to 

Theorem find an entire functionso that all the poles of f are zeros of g, 



Notes 

121 

and with the same multiplicities. Thus h=fg is an entire function and 

f=h/g.  

The expansion becomes particularly interesting if one may choose nk=h 

independent of k. This is the case if Yl \Rh(z/ak| converges absolutely 

uniformly for \z\ < R for any R. Since ak → to this happens if 

→(R/\ak\h+1=Rh+1→f 1/\ak\h+1 converges. In other words, if the 

zeros do not tend too slowly to infinity. Suppose now that h is the 

smallest integer for which Yl 1/\ak\h+1 converges is called the canonical 

product associated with the sequence a1, a2, ... ,  and the integer h is 

called the genus of the canonical product. If                                                      

possible we use the canonical product in the expansion. In that case the 

expansion becomes uniquely determined by f. If it then happens thatis 

a polynomial, one says that the function f has finite genus,  and the genus 

of f is the degree ofor the genus of the canonical product, whichever is 

the largest. This means for example that the function siny/z/y/z 

considered in Example and with the product expansion is of genus 0. 

EXAMPLE. The function sin nz has all the integers as its zeros,  and 

since Y 1/n diverges but Y 1/n2 converges we obtain an expansion of 

the form 

sin nz=ze(z TT(1ez/k 

If we group the factors for ±k together and compare the result to  it 

follows thatis the constant log n. Consequently, sin nz is of genus1 

and has the canonical expansion 

sin nz=zn TT(1 → → ez/k 

EXERCISE. If f has genus h, what is the possible range for the genus of 

z → f (z2 

EXERCISE. Let a1, a2, ... be a sequence satisfying 0 < \ak\ < 1 for all k 

for which ™=1 (1 → \ak\ converges. Show that the product 

(a so called Blaschke product converges to a function holomorphic in 

the unit disk with the given sequence as zeros. 
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6.5 PARTIAL FRACTIONS 

 

As we have seen a meromorphic function is the quotient of two entire 

functions, and thus the analogue of a rational function. A fundamen- tal 

fact about rational functions is that they allow a partial fractions 

expansion. In fact, if r(z=p(z/q(z where p and q are polynomials 

without common factors, then one may write 

r(z=g(z+Y→ pk( 

whereall Pk are polynomials, a1, ..., an the different zeros of q, and deg 

Pk=nk where nk is the multiplicity of ak as a zero of q. Note that Pk 

(z→ak is the singular part of r at ak as a meromorphic function. For a 

function meromorphic in the whole plane one would therefore expect a 

similar expansion, where nowis entire and n may be infinite. This 

leads to Mittag-Leffler's theorem, although the sum has to be slightly 

modified to ensure convergence. 

THEOREM. (Mittag-Leffler. Let a1, a2, ... be a sequence converging to 

to and let Pk be polynomials without constant terms. Then there are 

functions meromorphic in the whole plane with poles precisely at ak and 

corresponding singular part Pk(z→ak. The most general such 

meromorphic function may be written 

f (z=g(z+J2(Pk(—0~ → qk(z  

whereis entire and qk suitably chosen polynomials. 

PROOF. If ak=0 we choose qk=0. If ak=0 the function h(z = Pk (z→ak 

is analytic at 0 and we will choose for qk the corresponding                                 

Taylor polynomial of degree nk. If Y is the circle \Z|=\ak\/2 and z a point 

inside the circle we then have 

(a -h-Tz →yb -z+} d 

k=0 Y s k=0 
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Summing the geometric series we obtain 

znk+1 f h(Z d( 

h(z - qk(z = 

2ni J (Z → zZnk+1 

Supposing \Pk(z→kR\ → Mk for \z\=\ak|/2 we obtain 

\h(z → qk (z\ → 3Mk (2z nk+1 

\ak \ 

for \z\ → \ak|/3. Consider a disk \z\ → R. There are only finitely many of 

the ak with \ak\ < 3R, and it is clear that after removing the 

corresponding terms converges uniformly in \z\ → R if the series JO 

Mk(ahnk converges. We may consider this a power series in R, and it 

will then have infinite radius of convergence if the terms tend to 0 for 

every R > 0. Choosing nk > log Mk we have Mk(nk → (jkRnk → as k 

→ to since ak → to. Thus the sum in represents a meromorphic function 

with the same singular parts as f in all poles,  so the theorem follows.

  

 

6.6 HADAMARD'S THEOREM 

 

In this section we will prove a fundamental theorem by Hadamard 

connecting the growth rate at infinity of an entire function with the 

distribution of its zeros. As we know, the genus of an entire function 

gives information about the distribution of its zeros a1, a2, ... , since if the 

genus is h the function either has only finitely many zeros, or else the 

series 1/\ak\h+l converges. We now introduce a measure for the growth 

at infinity of an entire function f. First denote by M(r the maximum of \f 

(z\ on the circle \z\=r. 
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This means that A is the smallest number such that \f (z\ < elz\X+s for 

any given> 0 as soon as \z\ is sufficiently large. Consequently,  

polynomials have order 0, ez and sin z have order 1, ep(z has order n if p 

is a polynomial of degree n, and ee has infinite order. Note that whereas 

the genus is always a natural number (or infinity, the order may be any 

non-negative number (or infinity; for example, the entire function 

mBjZz we discussed earlier has order ½. 

THEOREM. (Hadamard. The genus h and order A of an entire function 

satisfy h < A < h +1. 

The proof needs a bit of preparation. Recall that the real and imag- inary 

parts of an analytic function of z=x+iy are harmonic functions. This 

means in particular that log \f (z\ is a harmonic function wher- ever f is 

analytic and=0, since in a neighborhood of such a point one may define a 

branch of log f (z, which has real part log \f (z\. Further- more, if u is 

harmonic in a neighborhood of \z\ < p, then it satisfies the Poisson 

integral formula 

u(z=— [ 7 u(pe dt 

y ; 2w \z - pelt\2 U J 

for \z\ < p. In particular, we have the mean value property u(0 = 

IT u(Peit dt. 

If f is analytic in the disk \z \ < p and never 0, we can apply Poisson's 

integral formula to log \f (z\. If f has zeros inside the circle we instead 

obtain Poisson-Jensen's formula. 

THEOREM. Suppose fH(Q where Q contains the disk \z\ < p and 

that f has only the zeros a1, ..., an in \z\ < p, and no zeros on \z\=p. Then 

the Poisson-Jensen formula 

2 → i f* it i 

log \f →=- flog I raO I+2n'f Re fe→ i»g \f (peit\d 

fc-l o 
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is valid if \z\  p is not one of the zeros. In particular, if f (0=0 we have 

Jensen's formula 

n 1 7 

log \f (0\=-Y→ log V~\ +2T log \f (Peit\ dt k-l \ak\ 2n J 

k-1 o 

PROOF. Note that if \z\=p, then p, -akz has absolute 

p(z-ak pz-ak 

value 1. Hence, if we set 

n 2 - >=f (z n p→kz   

then F has no zeros in \z\ < p and \F(z\=\f (z\ for \z\=p.                                                       

Thus follows on applying Poisson's integral formula to log \F(z\.  

We can now turn to Hadamard's theorem. 

PROOF OF THEOREM. Assume first that the entire function f has finite 

genus h. This means that Y! 1/\ak\h+1 converges, where a1, a2, ... are the 

zeros of f. The exponential factor in is clearly of order < h, and since the 

order of a product clearly does not exceed the order of the factors, we 

need only consider the canonical product. Using the notation it is P(z=e-

Rh (z/ak. To estimate the size of this                                              we 

shall prove that 

| ReRh(z\< (2h+l|z\h+l 

for all z. This is true for h=0, since log |1 → z\ < log(1+\z\ < |z|. By the 

definition of Rh it is obvious that we have 

| ReRh(z| |ReRh-i(z|+^ 

for all z. If|ReRh-l(z|  (2h → 1|z|h then clearly follows if →1. But if 

|z|  1 we have the estimate (1 → |z|| ReRh(z|  |z|h+i.                            

Multiplying by |z| and                                                                                                                              

adding we get|Re Rh(z|→|| ReRh-l(z|+2|z|h+i                                                                                            
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from which again follows by the induction assumption.                                                                            

We can now estimate 

log p(z=£(— Re Rh(z/ak  (2h+1|z|h+i1 →k | 

which shows that the order of P(z is at most h+1. 

Conversely we have to prove that if the function f has finite order A then 

1/ modulus ak converges, where h is the integer part of A. If the number 

of zeros of f in →| < p is denoted n(p, then applying Jensen's formula for 

the disk |z| < 2p we obtain 

n(piog2 < 2→ J logf (2Peit| dt→iogf (0|,  

where we have ignored the terms coming from zeros satisfying                                                               

p < a|< 2p. Given> 0 the integrand is here bounded by px+£ for 

sufficiently large p, so if we order the zeros according to size < < ... we 

have k  n→ak|  |ak|A+e for large k. Thus we have a bound 

1→k1/k(h+i/(A+e. If we chooseso small that a = (h+1/(A+e > 1 

the series 1/ka converges, so the genus of the canonical product is at 

most h. 

We finally need to show that the functionin the exponential factor in 

is a polynomial of degree < h. To this end, note that if f=u+iv is analytic, 

then f'=u'x+iv'x=u'x → iu'y according to the Cauchy-Riemann equations. 

Applying d → idyy to we therefore obtain 

tK \ n(p i Up → i 2n o it 

fi=£ v→r+£ +s 0 -og |f  

Differentiating this h times gives 

dLfM= C h 

[ ' dzh f (z → (at → zh+1 + E +|Ph-P| log If (pe„dl. fc-1 o 

We will show that the two last terms tend to 0 as p → o. Note first that 

the integral vanishes if f is constant, so that the integral is unchanged if 

we divide f by M(p. If \z\ < p/2 the absolute value of the integral is 

therefore at most a constant multiple of 
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p-h- Ilog \7pk\dt' 

By Jensen's formula we have - Jo2n log \f \ > log \f (0\ and since by 

assumption p → 0 as p → ∞, it follows that the integral in 

vanishes as p → ∞. Similarly, the penultimate term in  may, for \z\ < p/2 

be estimated by n(p/ph+1 which, as we have already seen, tends to 0 as 

p → ∞ . It follows that 

dh f '(z _ → h! 

dzh f (z (ak - zh+1 ' 

If we write f (z _ e→P(z, where P is the canonical product, then clearly 

the sum to the right is jC. PM, so that it follows that g(h+1l (z _ 0. 

Thusis a polynomial of degree at most h, and the proof is finally 

complete.  

As an indication of the power of Hadamard's theorem, we have the 

following corollary. 

COROLLARY. An entire function of non-integer order assumes every 

finite value infinitely many times. 

PROOF. Since f (z and f (z → w obviously have the same order,  as 

functions of z, for every complex number w, it is enough to show that the 

function f has infinitely many zeros if it is of non-integer order. If f only 

has finitely many zeros, then the canonical product is a polynomial and 

thus of order 0. Thus f is a polynomial times ep where p also is a 

polynomial (the genus being finite by Theorem. If p has degree n, then 

clearly f has order n, which is an integer. The corollary follows.  

Note that the most useful way to interpret Theorem is as a factorization 

theorem for functions of finite order. If the order is not                                               

an integer, the genus, and thus the form of the factorization, is uniquely 

determined, whereas there is an ambiguity if the order is an integer. 

EXERCISE. Let f be entire and M(r as before. Suppose lim logMr=A is 

finite and not 0. Show that f is of order A, but 
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r→-<x> r 

that the existence of the limit does not follow from assuming f to have 

order A. An entire function for which A is finite and > 0 is said to be of 

order A and normal type. Extend Corollary to show that an entire 

function of finite order has infinitely many zeros unless it is of integer 

order and normal type. 

 

6.6 ANALYTIC FUNCTIONS         

Functions Of A Complex Variable 

We now consider functions of a complex variable and develop a theory 

of differ- entiation for them. The main goal of the chapter is to introduce 

analytic functions,  which play a central role in complex analysis. 

Let S  be a set of complex numbers. A function f  defined on S  is a rule 

that assigns to each z in S a complex number w. The number w is called 

the value of f at z and is denoted by f(z; that is, w=f(z. The set S is 

called the domain of definition o f  f  . 6 

It must be emphasized that both a domain of definition and a rule are 

needed in order for a function to be well defined. When the domain of 

definition is not mentioned, we agree that the largest possible set is to be 

taken. Also, it is not always convenient to use notation that distinguishes 

between a given function and its values. 

EXAMPLE. If f  is defined on the set z = 0 by means of the equation 

w=1/z, it may be referred to only as the function w=1/z, or simply the 

function 1/z. 

Suppose that w = u + i v  is the value of a function f  at z = x + i y ,  so 

that 

u + i v = f ( x + i y  .  
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Each of the real numbers u  and v  depends on the real variables x  and 

y ,  and it follows that f(z can be expressed in terms of a pair of real-

valued functions of the real variables x and y: 

f ( z  = u ( x ,  y  + i v ( x ,  y  .  

If the polar coordinates r  and Q , instead of x and y, are used, then 

u +i v = f ( r e
i Q
  where w=u+iv and z=re

iQ
. In that case, we may write 

f ( z  = u ( r ,  Q  + i v ( r ,  Q  .  

EXAMPLE 2. If f ( z  = z
2
, then 

f ( x + i y  = ( x + i y 
2

= x
2
 - y

2
+i 2 x y .  

Hence 

u ( x ,  y  = x
2
 → y

2
 and v ( x ,  y  = 2 x y .  

When polar coordinates are used,  

f ( r e
i Q
 = ( r e

i Q


2
= r  

2
e

l 2 Q
= r

2
 cos 2Q+ir

2
 sin 2Q. 

Consequently,  

u ( r ,  Q  = r  
2
cos2Q and v ( r ,  Q  = r  

2
sin2Q. 

If, in either of equations the function v  always has value zero, then the 

value of f is always real. That is, f is a real-valued function of a complex 

variable. 

EXAMPLE . A real-valued function that is used to illustrate some 

important concepts later in this chapter is 

f ( z  = |z|
2
=x

2
+y

2
+i0. 

If n is zero or a positive integer and if a0 ,  a\ , a2 ,  . . . ,  a n  are complex 

constants,  where an=0, the function 

P ( z  = a 0 + a \ z +a2z
2
 + + anz

n
 

is a polynomial of degree n. Note that the sum here has a finite number 

of terms and that the domain of definition is the entire z plane. Quotients 
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P(z/Q(z of                        polynomials are called rational functions and 

are defined at each point z  where Q(z=0. Polynomials and rational 

functions constitute elementary, but important,  classes of functions of a 

complex variable. 

A generalization of the concept of function is a rule that assigns more 

than one value to a point z in the domain of definition. These multiple-

valued func- tions occur in the theory of functions of a complex variable, 

just as they do in the case of a real variable. When multiple-valued 

functions are studied, usually just one of the possible values assigned to 

each point is taken, in a systematic manner, and a (single-valued 

function is constructed from the multiple-valued function. 

EXAMPLE. Let z  denote any nonzero complex number. We know 

from Sec.θ that z
1/2

 has the two values 

z
1/2

=iVrexp→'→,  

where r =|z| and   ( — n  <  θ  <  n   is the principal value of arg z. But, 

if we choose only the positive value of ±+/r and write 

f ( z  = v→exp→z'y→ (r > 0, → n  <  θ  <  n  ,   

the (single-valued function is well defined on the set of nonzero 

numbers in the z plane. Since zero is the only square root of zero, we 

also write f(0=0. The function f is then well defined on the entire plane. 

MAPPINGS 

Properties of a real-valued function of a real variable are often exhibited 

by the graph of the function. But when w=f(z, where z and w are 

complex, no such convenient graphical representation of the function f is 

available because each of the numbers z and w is located in a plane 

rather than on a line. One can, however,  display some information about 

the function by indicating pairs of corresponding p o i n t s  z = ( x ,  y   

a n d  w = ( u ,  v  .   

To do this, it is generally simpler to draw the z and w planes separately. 
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When a function f  is thought of in this way, it is often referred to as a 

mapping,  or transformation. The image of a point z in the domain of 

definition S is the point w=f(z, and the set of images of all points in a set 

T that is contained in S is called the image of T. The image of the entire 

domain of definition S is called the range of f. The inverse image of a 

point w is the set of all points z in the domain of definition of f that have 

w as their image. The inverse image of a point may contain just one 

point, many points, or none at all. The last case occurs, of course,  

w h e n  w  i s  n o t  i n  t h e  r a n g e  o f  f .  

Terms such as translation, rotation, and reflection are used to convey 

domi- nant geometric characteristics of certain mappings. In such cases, 

it is sometimes convenient to consider the z and w planes to be the same. 

For example, the mapping 

w = z + 1=( x + 1+i y ,   

where z = x + i y ,  can be thought of as a translation of each point z  one 

unit to the right. Since i=e
in/2

, the mapping 

w = i z = r  exp 

where z=re
10

, rotates the radius vector for each nonzero point z through 

a right angle about the origin in the counterclockwise direction; and the 

mapping 

w = z = x → i y  

transforms each point z = x + i y  into its reflection in the real axis. 

More information is usually exhibited by sketching images of curves and 

regions than by simply indicating images of individual points. In the 

following three examples, we illustrate this with the transformation 

w=z
2
. We begin by finding the images of some curves in the z plane. 
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6.8 LET US SUM UP 

In this unit we have discussed the definition and example of Entire 

Functions…Sequences Of Analytic Functions, Infinite Products, 

Canonical Products, Partial Fractions, Hadamard's Theorem, Analytic 

Functions…..Functions Of A Complex Variable 

 

6.9 KEYWORDS 

Entire Functions…Sequences Of Analytic Functions.. In this section we 

shall consider sequences of analytic functions which are uniformly 

convergent. 

Infinite Products.. Any analytic function may be expanded in a power 

series centered at any point of the domain of analyticity 

Canonical Products.. Consider first the case of an entire function f with 

only finitely many non-vanishing zeros a1, ... , an, as always counted 

with multiplicities 

Partial Fractions.. As we have seen a meromorphic function is the 

quotient of two entire functions, and thus the analogue of a rational 

function 

Hadamard's Theorem .. In this section we will prove a fundamental 

theorem by Hadamard connecting the growth rate at infinity of an entire 

function with the distribution of its zeros.  
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Analytic Functions…..Functions Of A Complex Variable .. We now 

consider functions of a complex variable and develop a theory of differ- 

entiation for them. The main goal of the chapter is to introduce analytic 

functions,  which play a central role in complex analysis. 

6.10 QUESTIONS FOR REVIEW 

Explain Entire Functions… Sequences Of Analytic Functions 

Explain Functions Of A Complex Variable 

 

6.11 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Entire Functions…..Sequences Of Analytic Function  

              (answer for Check your 

Progress - 1 Q   

Functions Of A Complex Variable 

      (answer for Check your Progress - 1 Q   
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UNIT  -  VII: THE RIEMANN 

MAPPING THEOREM 

 

STRUCTURE 

7.0 Objectives 

7.1 Introduction  

7 2The Riemann Mapping Theorem 

7.3 The Gamma Function 

7.4 Singularities…..Singular Points 

7.5 Polynomials, Rational Functions And Power Series 

7.6 Let Us Sum Up   

7.7 Keywords   

7.8 Questions For Review   

7.9 Answers To Check Your Progress 

7.10 References  

7.0 OBJECTIVES 

 

After studying this unit,  you should be able to: 

Learn,  Understand about The Riemann Mapping Theorem 

The Gamma Function 

Singularities…..Singular Points 

Polynomials, Rational Functions And Power Series 

7.1 INTRODUCTION 
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In this part of the course we will study some basic complex analysis. 

This is an extremely useful and beautiful part of mathematics and forms 

the basis of many techniques employed in many branches of mathematic 

In this section we will study complex functions of a complex variable, 

The Riemann Mapping Theorem, The Gamma Function, 

Singularities…..Singular Points, Polynomials, Rational Functions And 

Power Series 

7.2 THE RIEMANN MAPPING THEOREM 

In this chapter we will prove the Riemann mapping theorem by a limiting 

procedure. We will then need to know that the sequence of mappings 

constructed, or at least a subsequence of it, has a limit. To see this, the 

sequence needs to have a compactness property, analogous to the 

Bolzano-Weierstrass' theorem for sequences of numbers. The appropriate 

concept is given by the following definition. 

DEFINITION. A family (i.e., a set F of analytic functions de- fined on a 

region Q is called normal if every sequence of functions in F has a 

subsequence locally uniformly convergent in Q. 

EXERCISE. Prove this equivalence (use the Heine-Borel theorem 

The main result about normal families is the following characterization. 

THEOREM. A family F of functions analytic on a region Q is normal if 

and only if it is locally equibounded. 

Here locally equibounded means that for each compact subsetof Q 

there is a constant KE such that \f (z| < KE for every fF and zE. 

Equivalently, every point in Q has a neighborhoodsuch that this holds. 

The proof of Theorem is a fairly simple consequence of a more general 

compactness theorem by Arzela and Ascoli. Before we can state this 

theorem we need to make a definition. 

DEFINITION. A family F of complex valued functions defined in a 

complex region Q is called locally equicontinuous if for every> 0 and 
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compact subsetof Q there is a   > 0 such that \f (z → f (w\ < e for 

every fF and all z, w Gsatisfying \z → w\ <  . 

Note that as given in the definition above depends only on F, E and e. In 

other words, it does not depend on the particular function f we are 

dealing with. 

THEOREM(Arzela-Ascoli. Suppose fi, f2, ... is a sequence of complex-

valued functions defined on a region Q C C, and assume the sequence is 

locally equibounded and equicontinuous in Q. Then there is a locally 

uniformly convergent subsequence.  

PROOF. The set of points in Q with rational real and imaginary parts is 

countable and dense in Q. That the set is countable means that there is a 

sequence z1, z2, ... consisting precisely of these points,  and that it is 

dense means that any neighborhood of any point in Q con- tains a point 

from the sequence z1, z2, .... Consider now the sequence f1(z1, f2(z1, 

f3 (zi, ... of complex numbers. This is a bounded se- quence since the set 

{z1} is compact, so by the Bolzano-Weierstrass' theorem it has a 

convergent subsequence, given by evaluating a sub- sequence f11, f12, 

f13, ... of f1, f2at z1; call the limit f (z1. The sequence f11(z2, f12(z2, 

f13(z2, ... is again bounded, so we can find a subsequence f21, f22, f23, 

... of f11, f12, f13, ... which converges when evaluated at z2; call the 

limit f (z2. Since a subsequence of a conver- gent sequence converges to 

the same thing as the sequence itself, we still have limn→^ f2n(z1=f 

(z1. Continuing in this fashion we get a sequence of sequences fk1, fk2, 

fk3, ... , k=1, 2, ... such that each sequence is a subsequence of the ones 

coming before it, and such that limn→ fkn(zj=f (zj for j < k. Now 

consider the 'diagonal sequence' f11, f22, f33, .... This is a subsequence 

of the sequence fj1, fj2, fj3, ... from its j:th element onwards, so limk→ 

fkk(zj=f (zj for any j. We shall finish the proof by showing that in fact 

f11, f22, f33, ... converges locally uniformly on Q. 

Let a compact subsetof Q and a number> 0 be given. By local 

equicontinuity we can then find 6 > 0 so that \fnn(z → fnn(w\ < e/3 for 

z, wE and \z → w\ < 6. Now consider the open cover ofgiven by 

the balls of radius 6 and centered at zj, j=1, 2, .... This is a cover since z1 
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, z2, ... is dense in Q. By the Heine-Borel theorem there is a finite 

number of balls, say centered at z1, z2, ... , zk which already cover E. 

Given zE we can therefore find zj with j < k such that \z → zj\ <6 and 

therefore get 

\fnn(z fmm(z\ 

< \fnn (z fnn(zj \+\fnn(zj  fmm(zj \+\fmm(zj fmm(z\ 

< e/3+\fnn( zj fmm(zj  \+e/3. 

By Cauchy's convergence principle (for complex numbers and our con- 

struction it follows that for every j there is a number Nj such that \fnn(zj 

→ fmm(zj\ < e/3 if n, m > Nj. If we choose N as the largest of N1, ... , 

Nk it follows that 

\fnn(z → fmm(z\ <e if n and m> N . 

Using the other direction of Cauchy's convergence principle it follows 

that f (z=limn→fnn(z exists for every zQ, and in the expression 

above we get \fnn(z → f (z\ <for every zE if n > N. This shows 

that fnn → f locally uniformly in Q.  

PROOF OF Theorem. It is clear by Theorem that all we have to do is 

show local equicontinuity of F. So let z0H and choose r > 0 such that 

the closed disk with radius 2r and centered at zo is in H. The boundary of 

the disk is a compact subset of H so we can find a uniform bound M on 

this set for all fF, b6+20y assumption. If z and w are in the disk B(r, 

z0 with radius r and center z0 we obtain 

f (z" f →=12Ti J f (z d → - p→^d(\ 

\C-z0\=2r 

I z - w |, t f K del 

2n 1 J (C - z (C - w 

\C-zo\=2r 

M|z - w|f 2M 
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J 1 d( 1=V 1 z - w 1 

\Z-zo\=2r 

since|( → zI > r,|( → w I > r. It follows that choosing 8 =makes | f (z 

→ f (w|<if z and wB(r, z0 and |z → w| < 8. The local 

equicontinuity of the family F follows and the theorem is therefore a 

corollary  

Theorem (Riemann mapping theorem. Given a simply connected                                          

region H which is not the entire complex plane C and a point z0H 

there is precisely one univalent conformal map f of H onto the unit disk 

such that f (z0=0 and f'(z0 > 0. 

Note that Liouville's theorem shows that it is not possible to map the 

entire plane C conformally onto the unit disk; the only bounded entire 

functions are the constants. 

PROOF. We have already proved the uniqueness in Chapter  after 

Schwarz' lemma. To see how to get existence, note that ifsolves the 

problem and f is a map of H into the unit disk mapping z0 onto 0 and 

with positive derivative at z0, then f o g-1 satisfies the conditions of 

Schwarz' lemma so Kf o g-1'(0| < 1. Calculating the derivative we see 

that this means that f'(z0 < g'(z0. If we have equality it follows from 

Schwarz' lemma that f=g. 

Now let F be the family of univalent functions f analytic in H such that f 

(z0=0, f (z| < 1 for zH and f'(z0 > 0. We just saw that if our 

problem has a solution it is the element of F which maximizes the 

derivative at z0. To complete the proof along these lines we need to: 

Show that F is not empty, See that F has an element f maximizing the 

derivative at z0 and, finally, Show that this f actually solves the mapping 

problem. 

Since H is not all of C there is a (finite point aH. Since H is simply 

connected we can define a single-valued branch h of \Jz → a in H. 

Clearly h can not take the value →w if it somewhere takes the value w.                                               

But by the open mapping theorem there is a disk \w → h(z0\ < p 
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contained in the image h(Q. It follows that \h(z+h(z0\ > p for all 

zQ; in particular 2\h(z0\ > p. The function 

hZ → h(zo= h(Zo( 1 2h(z+h(zo Vh(zo h(z+h(zo ,  

maps z0 to 0 and is bounded by 4\h(z0\/p. Its derivative at z0 is hh(°o. 

If we now put (  _ p \h'(z0\ h(z0 h(z → h(z0 gz 4 \h(z0\2 h'(z0 

h(z+h(z0 it follows thatis univalent, g(z0 _ 0, \g(z\ < 1, and g'(z0 

> 0 so that gF. Hence F _ 0. 

Since all elements of F have their values in the unit disk it follows that F 

is an equibounded family, and therefore by Theorem 7.3 a normal family. 

Now let B _ supjf '(z0 so that 0 < B < to. We can then find a sequence f\, 

f2, ... in F so that f'(z0 → B as j → to. Since F is normal we can find a 

locally uniformly convergent subsequence; call the limit function f. It is 

then clear that f '(z0 _ B so that actually B < to and f is not constant. By 

Corollary 6.5 f is univalent. It is clear that f (z0 _ 0 and f has its values 

in the closed unit disk; but by the open mapping theorem the values are 

then in the open unit disk. 

We need to prove that f (Q is the unit disk. Suppose to the contrary that 

w0 is in the unit disk but w0f (Q. Since Q is simply connected we 

may define a single-valued branch of 

f (z → w0 1 → W0f (z 

Since the Mobius transform w → preserves the unit disk, the 

1 → W W → ' 

functionmaps Q univalently into the unit disk. To obtain a member of 

F we now set 

F(z _ \G'(z0\ G(z → G(z0 

~ G'z 1 → G(z0G(z ' 

It is again clear that F has its values in the unit disk and maps z0 to 0. 

The derivative at z0 is easily calculated to be F'(z0 _ B 1+|l(G(Z(0>j|l > 

B so that FF. But this contradicts the definition of B. 
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Note that it is no accident that we get F'(z0 > f'(z0; this just expresses 

the fact that the inverse of the map f → F takes the unit disk into itself 

with 0 fixed so that Schwarz' lemma shows that the derivative at 0 is < 1 

(clearly the map is no rotation.  

7.3 THE GAMMA FUNCTION 

In earlier courses you may have encountered the function 

r(z=j tz-1e-t dt ,  

0 

the Gamma function. The integral converges locally uniformly in z for 

Re z > 0, since the absolute value of the integrand is tx-1e-t if z=x+iy. If 

0 < r < x < R this shows that on the interval (0, 1] the integrand may be 

estimated by tr-1, the integral of which converges on (0, 1]. Similarly, on 

the interval [1, to the integrand may be estimated by tR-1e-t=tR-1e-t/2 • 

e-t/2. Here the first factor tends to 0 as t → to and is therefore bounded 

on [0, to, say by M, so the integrand may be estimated by Me-t/2 which 

has convergent integral. It follows that r is analytic in Re z > 0, since the 

integrand is analytic. 

Integration by parts shows that the functional equation 

r(z+1=z r(z 

is valid for Re z > 0 (check this. Since clearly T(1=1 it follows by in- 

duction that r(n+1=n! for natural numbers n, so one may view the 

gamma-function as an extension of the factorial to non-natural num- 

bers. Another very important consequence of (8.1 is that it allows one to 

extend r analytically to the left of Re z=0. If r is already defined in z+1 

we may define r(z=1 r(z+1. Clearly this works as long as z=0. By 

induction we may therefore define r everywhere except at the non-

positive integers. In these points the extended gamma- function has 

simple poles. In this way the gamma-function is extended to a 

meromorphic function in the whole complex plane, with poles at 0, →1, 

→ 2, ... and nowhere else. 
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EXERCISE. Calculate the residues of r at the non-positive integers! 

To obtain a product expansion of r, let us first construct an entire 

function with simple zeros where r has poles. Since 1/n diverges but 1/n2 

does not, we set 

F(z=zJ(1+ke-z/k  Clearly F(zF(-z=-z2\\k=0(1 → fez/k so comparison 

with shows that z sin nz 

F (zF (—z  

It is also clear that F(z+1 has the same zeros, apart from z=0, as F(z, so 

we have 

F (z /z=eY(zF (z+1 

with an entire function 7. To determine 7 we take the logarithmic 

derivative of both sides to obtain 

^ 11 1 → 1 1 

(7Tk → l'=7 (z+T+T+(z+1+k → 1   

k=l k=l 

If we replace k by k+1 in the first sum we obtain, after simplification 

→ 1 1 

=£(k→^—1   

Since the series telescopes to the sum 1 we have 7' (z=0 so that 7 is 

constant. To determine the value of 7, we note that F(z/z → 1 as z → 0 

so we obtain from that 1=e1 F(1. But the n:th partial product of F(1 is 

23 n +1 _1_ 1 1 , . , L 

12--—e 2 n=(n+1exp<— →k   

so that y=limn→Sfc=1 f → logn The constant is called Euler's constant 

and equals approximately 0.5772. As far as I know it is not known 

whether 7 is rational (though it seems unlikely. If we set G(z=e_lz/F(z 

we have the expansion 
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e_YZ z 

G(z = JJ(1+--1ez/k ,  

z k=i k 

and from follows 

G(z+1=zG(z ,  

the same functional equation that r satisfies. One might now guess that 

G=r. We will show this, which is surprisingly difficult. Note that we 

obtain from and the functional equation the so called reflection formula 

n 

G(zG(1 → z = sin nz 

Since F has no poles the functionhas no zeros, and since it has the 

same poles as r, the function r(z/G(z is entire. If we can show that it is 

bounded, then by Liouville's theorem it is constant and since r(1=G(1 

we would be done. Note that by the functional equations thatand r 

satisfy we have r(z+1/G(z+1=r(z/G(z so that                                                     

r /G is periodic with period 1. We therefore only need to bound r /G in a 

period strip, say 1 < Re z < 2. But it is immediately clear that,  in this 

strip,|r(x+iy\ < r(x so r is bounded in the strip by the maximum of r in 

the real interval [1, 2]. We now need a lower bound for G(x+iy for 1 < x 

< 2 and \y\ large. Such a bound can be obtained from Stirling's formula 

G(z=V2→zz-1/2e-zeJ(z ,  

where J(z → 0 as z → to in a half-plane Re z > c > 0. We will prove this 

formula later; for the moment let us show that it implies the desired 

lower bound forand hence the identity ofand r. If  is true we obtain, 

for z=x+iy,  

log |G(z|=1 log2n → x+(x → 1 log \z\ → y argz+Re J(z . 

All terms are here bounded from below except →y arg z, which is at 

least bounded from below by →n\y\/2. It follows that r /G is bounded in 

the period strip by a constant multiple of en\y\/2. For a function of period 
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1 this is enough to show boundedness, since such a function may be 

viewed as a function of Z=e2niz, the possible values of z=Ay log Z 

differing by integers. As a function of Z the function r /G has isolated 

singularities at 0 and to, but our bound on r/G is e1 loghH/4, i.e., for 

small \Z\ a multiple of Z\-1/4 and for large Z\ a multiple Z\1/4. Thus both 

singularities are removable (see the following exercise, r/G is bounded, 

and we are done. 

EXERCISE. Recall that if f is analytic with an isolated sin- gularity at 

z=w, then the singularity is removable if (and only if (z → wf (z → 0 

as z → w. State a similar condition for singularities at infinity. 

Hint: Look at the discussion just before Theorem 

Let us now turn to Stirling's formula, so assume Re z > 0.                                                   

According to the logarithmic derivative of                                                                                      

G is →y → 1 → →°(z+k → k and differentiating once more we get 

d G'(z→ 1 

dz G(z (z +k2' 

For fixed z in the right half-plane the terms of the sum are the residues 

n cot nZ 

in the right half-plane of the function H(Z=  →. Note that (z+Z 

Z→z is not in the right half-plane, and is analytic and equals 

1 at 0. Thus the residue at 0 is z2. By periodicity the residue at k is 

(z_1k2; thus the residues of H are as stated. 

Now let y be the contour consisting of a rectangle with corners ±iY and 

n+2 ± iY, except for avoiding Z=0 by a small semicircle of radius r 

centered at 0, such that 0 is inside the contour. Consider f H. 

2ni Jy  

This is independent of r for small r and equals n=0 (z+k2 • On the 

horizontal sides the factor cot tends uniformly to ±i as Y → to, and the 

other factor (z+Z-2 tends uniformly to 0, so the corresponding integrals 



Notes 

144 

also tend to 0. Our contour now consists of two infinite vertical lines, 

apart from the little semicircle. On the line Re Z=n+I the factor cot nZ is 

bounded, independently of the integer n, so the corresponding integral is 

less than a multiple of fRe=n+1 \z+Z\-2 d Im Z which tends to 0 as n to. 

The integrals over the straight line parts of the remaining part of the 

contour may be written 

→r co 

f cot(inn 1 f cot(inn 

J w+zrdd - ijw+zpdn 

= 2 / - (i→ r 

and the integral over the semi-circle tends to → as r → 0 so we finally 

obtain 

d G'(z 1 1 f 4i→z 

(8-6 Tz G(zj=272+2 Jdn   

EXERCISE. Verify all calculations and claims above! 

Using Euler's formulas we may write i cot(inn=1+exp(27TV—l, and 

the part of the integral coming from the term 1 has the value 1/z. In this 

way we obtain 

d G'(z 1+1+[ 4qz dn 

dz G(z z 2z2 J (n2+z22 e2nn → 1 

We need to integrate this twice to obtain Stirling's formula. A first 

integration gives, for Re z > 0,  

G'(z 1 f 2n dn C+log z → G(z  

2z J n2+z2 e2nn → 1 

0 

Give a justification for changing the order of integration in the integral! 

To integrate once more we first make an integration by parts in the 
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integral. Noting that a primitive of the second factor is -l log(1 → e-'2nn 

we obtain 

2n dn 11 n → z log(1 → e→2" dn 

J n2+z2 e2nn → 1 n J (n2+z22 

log G(z=D+Cz+(z - 1 log z - - [ →2 l°g(1 -2nV dn   

2n J n+z2 

The last term (including the minus-sign we define to be 

J(z=~ 2 z 2 log idn ,  

n J n+z2 - 2nn 

so it only remains to show that J(z has the claimed behavior and to 

determine the constants of integration C, D. But we have \n2+z2j = \z → 

in\\z+in\ > c\z \ if Re z > c> 0 so the integral over [N, to may be 

estimated by the integral 22- JN° log e-2nn dn which is convergent and 

therefore <for sufficiently large N. But if \z\ > N we can estimate the 

integral over (0, N] by N2} log 1 _e-2nV dn, which tends to 0 

as z → to. Thus J(z → 0 if z to in Re z > c> 0. The functional equation 

formay be expressed logG(z+1=logz+logG(z, at least if z > 0. 

Substituting (8.6 in this gives, after simplification,  

C(z+2 log(1+"+J(z → J(z+-   

Letting z → +to it follows that C1. To determine D we substitute in the 

reflection formula G(zG(1 → z=n/ sin nz for z=2+iy to obtain, after 

simplification,  

n <D\2 

(eD 2 

cosh ny 

X exp(-1+iy(log(2+iy - log( 1 - iy+J(2+iy+J(2 - iy} 
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where the logarithms have their principal value. Further simplification 

gives 

(eD 2=2n exp(1+2y arctan(2y → J (2+iy → J (2 → iy / (eyn+e _yn 

= 2n exp(yn → 2y arctan 2y+1 → J(1+iy → J(2 → iy/(eyn+e_yn→ 

2n as y → +to   

Since G(x > 0 for x > 0 it follows that eD=\[2n so we have finally 

proved Stirling's formula for G. Since this implies the identity of G and r 

we have also proved the reflection formula 

r(zr(1 → z= sin nz 

and Stirling's formula 

r(z=V2nzz _1/2_ z eJ (z   

EXERCISE. Verify the calculations above. Then show that the integrand 

in J(z may be developed as a finite sum of odd powers of 1/z plus a 

remainder and that the result may be integrated to yield an expansion 

J(z=z2k-l+Jn(z  

where the remainder Jn(z may be estimated by a constant multiple of 

1/z2n+i for large z satisfying Re z > c > 0. Also show that for fixed z the 

remainder Jn(z has no limit as n → o. An expansion of this kind is 

called an asymptotic expansion (as z → o in Re z > c > 0. One may 

express the constants A k explicitly in terms of the so called Bernoulli 

numbers. 

 

7.4 SINGULARITIES 

SINGULAR POINTS 

An isolated singularity of a complex function f is a point a such that it 

has a neighborhood O with f analytic in O \ {a} (a so called punctured 

neighborhood of a. In some cases a is an isolated singularity simply 

so that another integration gives 
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because we do not know that f is analytic there, or that f is not analytic at 

a but will become so provided we assign the correct value to f (a. In that 

case a is said to be a removable singularity for f. A typical example 

would be z → YY which is not defined at 0,  but where it is clear from 

the power series expansion of sin z that the function becomes entire once 

we assign it the value 1 at the origin. The main fact about removable 

singularities is contained in the following theorem. 

THEOREM. Suppose that f is analytic in a punctured neigh- borhood of 

a. Then a is a removable singularity for f if and only if (z → a f (z → 0 

as z → a. 

Thus the singularities we allowed in Corollaries are actually removable, 

and may be ignored. 

PROOF. The 'only if' part of the theorem is trivial, since in that case f 

must have a finite limit at a. To prove the other direction, let Y and u be 

the positively oriented boundaries of disks centered at a and such that f is 

analytic in the punctured disks. If u is the smaller disk f is analytic in the 

ring-shaped region between u and y. 

f (z=— / d( → → j d(2m J Z → z 2m J Z → z 

if z is in the ring-shaped region. Note that the first integral is analytic in 

the disk bounded by y according to Lemma 3.10. If we can show that the 

integral over u is zero we have therefore proved the theorem,  since we 

may remove the singularity at a by defining f (a to be the value of the 

first integral at z=a. 

Actually, the integral over u does not depend on the radius of the disk it 

bounds, as long as that radius is smaller than \z → a|. To show that the 

integral is 0 it is therefore sufficient to show that its limit as the radius 

tends to 0 is 0. To see this, let> 0 and choose 6 > 0 so small that |(Z → 

af ((| <if \Z → a\ <8. Then, if the radius of u is r < 8 and r < \z → 

a|/2, we obtain \Z → z\ > \z → a| → \Z → a\=\z → a\ → r > \z → a\/2 so 

that 

J |Z → a||Z → z\ \z → a\ Z → z 
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The proof is now complete.   

Let us now consider an arbitrary isolated singularity a for f. Then one of 

the following three cases must obtain: 

There is a real number a such that \z → a\af (z → 0 as z → a. 

There is a real number a such that \z → a\af (z → to as z → a. 

Neither of the first two cases hold. 

Consider first case (1. If a < 1, then f has a removable singularity at a by 

Theorem. Otherwise, if n is the largest integer < a we have (z → an+1 f 

(z → 0 as z → a. By Theorem it follows that the function (z → anf (z 

has a removable singularity at a. This function may have a zero at a, but 

ignoring the trivial case when f is identically zero, we may lower the 

value of n until (z → anf (z has a non-zero value at a. If n < 0 it follows 

that f is analytic at a. If n > 0 and the power series expansion around a of 

(z → anf (z is °k=0 ak(z → ak it follows that 

f (z =5→ bk(z → ak+^ bk(z → ak 

where bk=an+k. The first sum above is called the singular part of f at a. 

Note that the singular part is analytic everywhere (even at to except at a. 

Therefore, if we subtract the singular part from f we get a function which 

is analytic wherever f is, and also at a. Subtracting the singular part at a 

therefore removes the singularity at a. The fact that the singular part, in 

this case, consists of a finite sum of very simple functions makes this 

type of singularity rather harmless. It is called a pole of order n. 

A pole of order n > 0 is characterized by the fact that (z → anf (z has a 

non-zero limit as z → a, just as a zero of order n is characterized by the 

fact that (z → a—nf (z has a non-zero limit as z → a. Note that f (z → 

to as z approaches a pole so that 1/f has a removable singularity there. 

We may therefore view a pole as a point where f is 'analytic with the 

value to'; this agrees completely with our point of view when we 

discussed functions analytic on the Riemann sphere. Also note that poles, 

like zeros, are isolated points. We finally note that if f has a pole or zero 
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of order \n\ at a, then case (1 holds exactly if a > n and case (2 holds 

exactly if a < n. 

Now let us consider case (2. If n is the smallest integer > a, then (z → 

anf (z → to as z → a so that (z → a—n/f (z has a removable                            

singularity at a. It is clear that this function has a zero at a, say of order k 

> 0. It is then clear that (z → an+kf (z has a removable singularity with 

a non-zero value at a. Therefore, if n+k < 0 f has a removable singularity 

at a, and otherwise f has a pole of order n+k at a. So, also in case (2 we 

have at worst a pole at a. 

Unless we have case (3 we therefore have at worst a pole at a and a 

singular part consisting of a finite linear combination of negative integer 

powers of z → a. Conversely, this can not be the case in case (3 since a 

pole or a regular point immediately puts us in the cases (1 and (2. We 

call the singularity at a essential when we have case (3. It clearly is a 

less simple situation, since we can not have a finite singular part in this 

case. We shall see in the next section that there actually is a singular part, 

but it has infinitely many terms. Another indication of how complicated 

the behavior of an analytic function is near an essential singularity is 

given by the following theorem. 

THEOREM (Casorati-Weierstrass. The range of the restriction of an 

analytic function to an arbitrary punctured neighborhood of an essential 

singularity is dense in C. 

PROOF. Suppose f is analytic in the punctured neighborhood Q of a, and 

that there is a complex number b such that all values of f in Q has 

distance at least d > 0 from b. Consider the function g(z=(f(z → b-1. It 

is analytic in Q and bounded by 1/d there. By Theorem it therefore has a 

removable singularity at a so that 1/g(z has at most a pole at a (ifhas a 

zero of order n at a, then the pole has order n. So, f (z=b+1/g(z has at 

worst a pole at a.   

EXAMPLE. The function e}/z, z=0, has an essential singularity at 0. To 

see this, note that if z → 0 along the positive real axis the function tends 

to to, so the function can not have a removable singularity at 0. On the 
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other hand, e}/z → 0 as z → 0 along the negative real axis, so the origin 

can not be a pole either. The only remaining possibility is an essential 

singularity. Note that by the usual power series expansion for the 

exponential function we have e}/z = 1+SkL1 klk. Hence this function 

actually has a singular part, but it consists of infinitely many terms. 

Let us end this section by a short discussion of poles at infinity. Naturally 

f is said to have a pole of order n at to if z → f (1/z has a pole of order n 

at 0. It therefore has a singular part which is a polynomial p(1/z of order 

n in 1/z. In particular, it follows that f (1/z → p(1/z has a removable 

singularity at 0, so is bounded there. It follows that f (z → p(z is 

bounded at infinity. The singular part of a function which has a pole of 

order n at infinity is therefore a polynomial of order n. 

DEFINITION. A function is said to be meromorphic in a region Q if it is 

analytic in Q except for poles at certain points. 

Suppose f is meromorphic in the extended plane C*. Since the extended 

plane is a compact set, f can only have a finite number of poles; by 

Bolzano Weierstrass' theorem there would otherwise be a point of 

accumulation of poles in the extended plane. This would have to be a 

non-isolated singularity. We may therefore subtract the singular parts for 

all the poles from f and will then be left with a function analytic in the 

extended plane. In particular, a bounded function. By Liouville's theorem 

it will have to be constant. We have proved the following theorem. 

THEOREM. A function is meromorphic in the extended plane if and 

only if it is rational. 

As a special case it follows that an entire function which is not a 

polynomial has an essential singularity at to. The elementary functions 

ez, cos z and sin z therefore have essential singularities at to. 

7.5 POLYNOMIALS, RATIONAL 

FUNCTIONS AND POWER SERIES 

We define a polynomial to be a complex-valued function p of a complex 

variable given by a formula p(z=anzn+an-1zn-1+... + aiz+ao where the 
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coefficients a0, ... an are complex numbers, an=0,  and n is a non-

negative integer, called the degree of the polynomial,  degp. The function 

identically equal 0 is also a polynomial, of degree -o. The sum of two 

polynomials of degrees n and m is a polynomial of degree < max(n, m. 

The product of two polynomials of degrees n and m is a polynomial of 

degree n+m. The division algorithm says that if p and q are polynomials, 

then there are unique polynomials k and r with deg r < deg q such that 

p=kq+r. From this follows the factor theorem which states that if p(a=0, 

then z - a divides p.  

The proof is simply the observation that since p(z=k(z(z → a+r where 

r is constant (of degree < 1, then r=0 if and only if p(a=0. It is of course 

possible that the quotient k is also divisible by z → a. If j is the largest 

integer such that (z → aj divides p, then j is called the multiplicity of a 

as a zero of p. 

It also follows from the factor theorem that two polynomials p, q for 

which p(z=q(z for all zC have to be identical, i.e., have the same 

coefficients. 

A very important fact about polynomials (which is only true if we 

consider polynomials in the complex domain is the fundamental the- 

orem of algebra which says that any non-constant polynomial has a zero. 

We will prove this later, but assume it for the present. Com- bining the 

fundamental theorem of algebra with the factor theorem it easily follows 

that if we add up the multiplicities of all the zeros of a polynomial p 

('count the zeros with their multiplicities', the sum will be the degree of 

p. 

Also for complex functions the concepts of limit and continuity are of 

central importance. However, since complex numbers are just vectors in 

R2 , where we in addition has defined a multiplication, we can take these 

concepts over from the calculus of several real variables. For reference 

we nevertheless state the definitions 

DEFINITION. Suppose f is a complex-valued function of either a real or 

complex variable, with domain Q C R or Q C C. 
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If a is a point in the closure of Q, we say that lim→a f (z=A if A is a 

complex number such that for every> 0 there is a 6 > 0 with the 

property that \f (z → A\ <whenever zQ and 0 < \z → a\ <6. 

If aQ we say that f is continuous at a if lim→a f (z=f (a. 

All the standard calculation rules for limits and continuity familiar from 

calculus continue to hold in this context, with exactly the same proofs, so 

we will not dwell on this. We also remind the reader of the concept of 

uniform convergence for a sequence of functions. 

DEFINITION. Suppose f and f\, f2, ... are complex-valued function of 

either a real or complex variable, with domain Q C R or Q C C. If K C Q 

we say that fj → f uniformly on K if for every e > 0 there is a real 

number N such that \fj(z → f(z\ <for all zK if j > N. 

As a function in C a polynomial is continuous; this follows easily since 

constant polynomials and the polynomial z obviously are contin- uous, 

and any other polynomial can be built up from these by mul- tiplications 

and additions so the continuity follows from the standard calculation 

rules for limits. 

A rational function is a quotient r(z=p(z/q(z where p and q are 

polynomials and q not identically 0 (if q is constant r is a polynomial. 

It follows that r is continuous as a function in C in all points which are 

not zeros of q. We may assume that p and q have no common non- 

constant polynomial factors (the common divisor to two polynomials of 

largest degree can always be found by a purely algebraic device, the 

Euclidean algorithm. Hence p and q have no common zeros. It follows 

that r(z to as z tends to any zero of q. As z → to we have r(z → 0 if 

degp  deg q and r(z → to if degp  deg q. If degp=deg q, then r(z → 

a/b where a and b are the highest order coefficients of p and q 

respectively. 

A power series is a series 

→an(z → an 
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where a, a0, a\, a2, ... are given complex numbers and z a complex vari- 

able. In many respects such series behave like 'polynomials of infinite 

order' and that is actually how they were viewed until the end of the 19:th 

century. The very first question to ask is of course: For which values of z 

does the series converge? In order to answer this question we make the 

following definition. 

DEFINITION. Let the radius of convergence for be R=supjr > 0|a0, a\r, 

a2r2, ... is a bounded sequence } . 

Then R is either a number > 0 or R=to. 

The explanation for the definition is in the following theorem. 

THEOREM. For lz → al > R the series diverges and for lz → al < R it 

converges absolutely. The convergence is uniform on every compact 

subset of lz → al < R. 

In order to prove the theorem we need a few results which should be well 

known in the context of functions of a real variable. 

THEOREM. An absolutely convergent complex series is conver- gent. 

PROOF. For any complex number z we have l Re zl < lzl and l Imzl < lzl 

< l Re zl+l Imz|. Hence, if lanl is convergent, then by comparison the real 

series → Re an and → Im an are absolutely con- vergent, to x and y say. 

The theorem now follows from 

l an → x → iyl < l Re an → xl+l Im an → yl → 0 as N → to . 

The next theorem is the complex version of what is usually known under 

the silly name of Weierstrass' M-test. 

THEOREM. Let A be a subset of C and f1, f2, ... a sequence of complex 

functions defined on A and such that \fn(z\ < an for all zA and n=1, 

2, ... . If J→=0 an converges, then fn(z converges 

uniformly in A. 

PROOF. By Theorem the series fn(z converges absolutely for every 

zA; call the sum s(z. Then N 
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\s(z fn(z \=1 fn(z\  \fn(z\  an . 

n=N+1 n=N+1 

The last member does not depend on z and tends to 0 as N → ∞. The 

theorem follows.   

PROOF OF Theorem . If \z → a\ > R then an(z → an, n = 0, 1, 2, ... is 

an unbounded sequence and hence can not converge to 0. Hence the 

power series diverges. 

If r < R, then there exists p > r such that anpn, n=0, 1, 2, ... is a bounded 

sequence; let C be a bound. Then if \z → a\ < r we have \an(z → an\ < 

\an\rn=\anpn\(r/pn < C(r/pn. Since a geometric series with quotient 0 < 

r/p < 1 is convergent, the theorem follows from Theorem (any compact 

subset of \z → a\ < R is a subset of \z → a\ < r for some r < R.   

Here is the complex version of another well known theorem. 

THEOREM . Suppose f\, f2, ... is a sequence of continuous,  complex 

functions converging uniformly to f on the set M. Then f is continuous 

on M. 

The proof is word for word the same as in the case of real functions                                              

so we will not repeat it here. We have the following corollary of 

Theorems. 

COROLLARY . If R is the radius of convergence, then is a continuous 

function of z for \z → a\ < R. 

PROOF. The partial sums of a power series are polynomials and therefore 

continuous. Since any z in the disk \z → a\ < R is an in- terior point of a 

compact subset of the disk the claim follows from Theorems.   

So far we have said nothing about convergence on the boundary of the 

circle of convergence. There is a good reason for this; nothing much can 

be said in general. One can have divergence at every point of the circle, 

convergence at some points and divergence at others or one can have 

absolute convergence at every point of the circle. A general result by 

Carleson (1966 says that if J→°=0 \anRn\2 converges, then will 
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converge 'almost everywhere' on the circle, in the sense of Lebesgue 

integration. On the other hand, there are examples                                                                              

(the first one given by Kolmogorov in 1926                                                                                               

for which anRn 0 such that diverges for every point on the circle. 

EXERCISE. Show that Yl→=0 zn diverges at every point of its circle of 

convergence, that ff=0 zn/n converges for some but not all points on its 

circle of convergence and that 0 zn/n2 converges ab- solutely for all 

points on its circle of convergence. 

It is often possible to find the radius of convergence for a given power 

series by inspection and use of the definition. As an aid in cases where 

this might be difficult we have the following two theorems. 

THEOREM. lim \an\1/n=1/R. This is to be interpreted by n→∞ 

using the conventions 1/0=to and 1/to=0. 

Here we have defined lim cn=lim sup→^ cn=limn→^ supfc>n ck 

n→∞→ for a real sequence c0, c1, .... 

PROOF. Let L=lim \an\l/n. If r < 1/L, then \an\1/n < 1/r for all 

n→-<x> 

sufficiently large n. Hence \anrn\ < 1 for such n, so the sequence anrn,  

n=0, 1, 2, ... is bounded. Hence 1/L < R. 

If r > 1/L, then there exists p, r > p > 1/L, so that \an\1/n > 1/p for 

infinitely many n. Hence \anrn\=\anpn\(r/pn  (r/pn for infinitely many 

n. Since (r/pn → to the sequence anrn, n=0, 1, 2, ... can not be bounded 

and so 1/L > R and the proof is complete (check the cases L=0 and L=to 

separately. 

Check your Progress - 1 

Discuss Riemann Mapping Theorem 

________________________________________________________ 

________________________________________________________ 
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________________________________________________________ 

Discuss Rational Functions And Power Series  

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

7.6 LET US SUM UP 

In this unit we have discussed the definition and example of The 

Riemann Mapping Theorem, The Gamma Function, 

Singularities…..Singular Points, Polynomials, Rational Functions And 

Power Series 

7.7 KEYWORDS 

The Riemann Mapping Theorem.. In this chapter we will prove the 

Riemann mapping theorem by a limiting procedure 

The Gamma Function.. In earlier courses you may have encountered the 

function 

r(z=j tz-1e-t dt 

Singularities…..Singular Points Polynomials… An isolated singularity of 

a complex function f is a point a such that it has a neighborhood O with f 

analytic in O \ {a} (a so called punctured neighborhood of a) 

Rational Functions And Power Series.. We define a polynomial to be a 

complex-valued function p of a complex variable 

 

7.8 QUESTIONS FOR REVIEW 

Explain Riemann Mapping Theorem 

Explain Rational Functions And Power Series 
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7.9 ANSWERS TO CHECK YOUR 

PROGRESS 

Riemann Mapping Theorem       

              (answer for Check 

your Progress - 1 Q  

Rational Functions And Power Series  

     (answer for Check your Progress - 

1 Q ) 
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